The 3rd Chiba University-Mahidol University Joint Symposium on Pharmaceutical Sciences

Program and Abstract Book

hosted by Faculty of Pharmacy, Mahidol University
Thursday August 2, 2018

Venue: Room 606, Rajaratana Building, Faculty of Pharmacy, Mahidol University
Bangkok, Thailand
Contents

1. Anti-inflammatory effects of the extracts from Phellinus mushroom
 Toshihiko Toida
 1

2. Amorphous solid systems of poorly water-soluble drugs
 Satit Puttipipatkhachorn, Waree Limwikrant, Nattawut Charoenthai, and Kasama Pongsamart
 2

3. Physicochemical characterization of drug nanoproducts by NMR, AFM, and cryoTEM
 Kunikazu Moribe
 3

4. Differential modulation of spinal nociceptive processing by aspirin-triggered resolvin D1
 in rat pain model
 Pongsatorn Meesawatsom, James Burston, Gareth Hathway, Andrew Bennett, and Victoria Chapman
 5

5. Plant cell and tissue cultures for the production of medicine, cosmetic and food ingredients
 Somnuk Bunsupa, Veena Nukoolkarn, Pongtip Sithisarn, Nitirat Visetkit, Pornpatsorn Lertphaudungkit, Paktraporn Mekloy, Piyanuch Rojsanga, Krisada Sakchaisri, and Sapaart Sirikantaramas
 6

6. Advance in anticancer drug development
 Pakatip Ruenraroengsak
 7

7. v-Src-mediated stochastic oncogenic transformation
 Takuya Honda, Yuji Nakayama, Noritaka Yamaguchi, and Naoto Yamaguchi
 8

8. Thai Phellinus mushrooms, phytochemical profiles and biological activities
 Punjaporn Sunthudlakhar, Pongtip Sithisarn, Bhusita Wannissorn, Siripen Jarikasem, Piyanuch Rojsanga, and Toshihiko Toida
 9

9. Hypoxia inducible factor-1α regulates human EP4 receptor expression by binding to specificity protein-1
 Naofumi Seira, Kazuyuki Yamagata, Keiyo Fukushima, Yumi Araki, Naoki Kurata, Naoki Yangaisawa, Masato Mashimo, Hiroyuki Nakamura, John W. Regan, Toshihiko Murayama, and Hiromichi Fujino
 10

10. Effect of physicochemical properties of microemulsion formed by self-microemulsifying drug delivery systems (SMEDDS) on the oral absorption of fenofibrate
 Yushi Sunazuka, Keisuke Ueda, Kenjiro Higashi, and Kunikazu Moribe
 11

11. Preparation and characterization of fenofibrate spray-dried nanoemulsion
 Kun Sodalee, Waree Limwikrant, Thaned Pongjanyakul, Kunikazu Moribe, and Satit Puttipipatkhachorn
 12
Abstract

Differential modulation of spinal nociceptive processing by aspirin-triggered resolvin D1 in rat pain model

Pongsatorn Meesawatsom1*, James Burston2, Gareth Hathway2, Andrew Bennett3, Victoria Chapman2

1Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
2Arthritis UK Pain Centre, 3FRAME Alternatives Laboratory, Queen’s Medical Centre, School of Life Sciences, University of Nottingham, United Kingdom

Resolvins are families of specialised proresolving mediators (SPMs) that have been recently identified. Harnessing the actions of the resolvin pathways has the potential for the treatment of a wide range of conditions associated with overt inflammatory signalling. Aspirin-triggered resolvin D1 (AT-RvD1 also known as 17R-RvD1) is a docosahexaenoic acid (DHA)-derived resolvin generated by the acetylation of cyclooxygenase-2 (COX-2) by aspirin. AT-RvD1 has previously shown a robust analgesic effect in behavioural models of pain e.g. neuropathic pain form mechanical nerve injury and inflammatory arthritis. We have investigated acute effects of spinally applied AT-RvD1 on evoked responses of spinal neurones in vivo in rat pain models from different causes, including, carrageenan (CAR)-induced acute inflammatory pain, monosodium iodoacetate (MIA)-induced chronic osteoarthritic (OA) pain and paclitaxel (PCX)-induced chronic peripheral neuropathic pain. Arrays of relevant spinal gene expressions following the pain model induction were also examined. AT-RvD1 demonstrates the differential inhibition of spinal nociceptive processing in different models of pain. The inhibitory effects of AT-RvD1 was evident in CAR and PCX models. Spinal administration of AT-RvD1 (15 ng/50ul) produced rapid and robust inhibition of electrical stimulus-evoked responses of spinal neurons (30-50% inhibition on nociceptive fibre responses and central excitability) selectively in CAR-treated but not in control rats. AT-RvD1 (15 and 150 ng/50ul) inhibited low intensity mechanical stimulus-evoked responses only in PCX-treated rats in a dose-dependent manner (35-70% inhibition). AT-RvD1 produced a dose dependent inhibition of cold (acetone)-evoked responses in PCX rats (70-80% inhibition), however the spinal neurones in the control rats were also inhibited to a similar degree. The robust AT-RvD1-mediated inhibition of the spinal neurones seen in these two models suggests that spinal cord is the major site of action of AT-RvD1 in acute inflammatory pain and PCX-induced neuropathic pain. On the contrary, the AT-RvD1-mediated inhibition of evoked neuronal responses in the MIA model was very limited (10-15% inhibition on Aδ-fibre responses). The inhibition of AT-RvD1 in pain models may be underpinned by unique spinal changes of resolvin system, especially an increase in the mRNA expression of 5-lipoxygenase activating protein (FLAP), encoding a protein determining endogenous resolvin synthesis, in the carrageenan and PCX models which was not seen in the MIA model. Our data provide for the first time the evidence of heterogeneous spinal plasticity of the resolvin system in different types of pain and support further investigation of AT-RvD1 as a novel analgesic.

*Pongsatorn Meesawatsom is currently a lecturer in the Department of Pharmacology at Faculty of Pharmacy, Mahidol University, Thailand. PM obtained a B. Pharm. from Naresuan University, Thailand (2001), M.Sc. in Pharmacy (Pharmacology) from Mahidol University, Thailand (2007), and Ph.D. in Pharmacology and Physiology from University of Nottingham, UK (2018). The research areas of interest is neurobiology of pain and pharmacology of analgesics.