Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChayada Sitthideten_US
dc.contributor.authorSunee Korbsrisateen_US
dc.contributor.authorAbigail N. Laytonen_US
dc.contributor.authorTerence R. Fielden_US
dc.contributor.authorMark P. Stevensen_US
dc.contributor.authorJoanne M. Stevensen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherThe Pirbright Instituteen_US
dc.contributor.otherUniversity of Edinburgh, Roslin Instituteen_US
dc.identifier.citationJournal of Bacteriology. Vol.193, No.8 (2011), 1901-1910en_US
dc.description.abstractActin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA (Burkholderia intracellular motility A). The mechanism by which BimA mediates actin assembly at the bacterial pole is ill-defined. Toward an understanding of the regions of B. pseudomallei BimA required for intracellular motility and the binding and polymerization of actin, we constructed plasmid-borne bimA variants and glutathione-Stransferase fusion proteins with in-frame deletions of specific motifs. A 13-amino-acid direct repeat and IP 7 proline-rich motif were dispensable for actin binding and assembly in vitro, and expression of the mutated proteins in a B. pseudomallei bimA mutant restored actin-based motility in J774.2 murine macrophage-like cells. However, two WASP homology 2 (WH2) domains were found to be required for actin binding, actin assembly, and plaque formation. A tract of five PDASX direct repeats influenced the polymerization of pyrene-actin monomers in vitro and was required for actin-based motility and intercellular spread, but not actin binding. None of the mutations impaired surface expression or polar targeting of BimA. The number of PDASX repeats varied in natural isolates from two to seven. Such repeats acted additively to promote pyrene-actin polymerization in vitro, with stepwise increases in the rate of polymerization as the number of repeats was increased. No differences in the efficiency of actin tail formation could be discerned between strains expressing BimA variants with two, five, or seven PDASX repeats. The data provide valuable new insights into the role of conserved and variable motifs of BimA in actin-based motility and intercellular spread of B. pseudomallei. © 2011, American Society for Microbiology.en_US
dc.rightsMahidol Universityen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectImmunology and Microbiologyen_US
dc.titleIdentification of motifs of Burkholderia pseudomallei BimA required for intracellular motility, actin binding, and actin polymerizationen_US
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.