Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Endochondral bone growth, bone calcium accretion, and bone mineral density: How are they related?
Authors: Kannikar Wongdee
Nateetip Krishnamra
Narattaphol Charoenphandhu
Mahidol University
Burapha University
Keywords: Biochemistry, Genetics and Molecular Biology
Issue Date: 1-Jul-2012
Citation: Journal of Physiological Sciences. Vol.62, No.4 (2012), 299-307
Abstract: Endochondral bone growth in young growing mammals or adult mammals with persistent growth plates progresses from proliferation, maturation and hypertrophy of growth plate chondrocytes to mineralization of cartilaginous matrix to form an osseous tissue. This complex process is tightly regulated by a number of factors with different impacts, such as genetics, endocrine/paracrine factors [e.g., PTHrP, 1,25(OH) 2 D 3 , IGF-1, FGFs, and prolactin], and nutritional status (e.g., dietary calcium and vitamin D). Despite a strong link between growth plate function and elongation of the long bone, little is known whether endochondral bone growth indeed determines bone calcium accretion, bone mineral density (BMD), and/ or peak bone mass. Since the process ends with cartilaginous matrix calcification, an increase in endochondral bone growth typically leads to more calcium accretion in the primary spongiosa and thus higher BMD. However, in lactating rats with enhanced trabecular bone resorption, bone elongation is inversely correlated with BMD. Although BMD can be increased by factors that enhance endochondral bone growth, the endochondral bone growth itself is unlikely to be an important determinant of peak bone mass since it is strongly determined by genetics. Therefore, endochondral bone growth and bone elongation are associated with calcium accretion only in a particular subregion of the long bone, but do not necessarily predict BMD and peak bone mass. © The Physiological Society of Japan and Springer 2012.
ISSN: 18806546
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.