Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum NMR and uniaxial deformation by in situ synchrotron X-ray diffraction
Authors: Justin Che
Shigeyuki Toki
Juan L. Valentin
Justo Brasero
Adun Nimpaiboon
Lixia Rong
Benjamin S. Hsiao
Stony Brook University
CSIC - Instituto de Ciencia y Tecnologia de Polimeros (ICTP)
Mahidol University
Keywords: Chemistry;Materials Science
Issue Date: 28-Aug-2012
Citation: Macromolecules. Vol.45, No.16 (2012), 6491-6503
Abstract: The structural development and morphology in unvulcanized and vulcanized (both pre- and postvulcanized) natural rubber latex were studied in a relaxed state and under deformation by multiple-quantum (MQ) NMR and in situ wide-angle X-ray diffraction (WAXD), respectively. Vulcanization was carried out using both sulfur and peroxide, showing important differences on the spatial distribution of cross-links according to the source of vulcanizing agents. Sulfur prevulcanization promotes the formation of highly homogeneous networks in the dispersed rubber particles, whereas peroxide vulcanization makes broader spatial cross-link distributions. The latter is compatible with the formation of core-shell network structures. Molecular orientation and strain-induced crystallization were analyzed by both stress-strain relations and WAXD. An increase in the vulcanizing agent concentration led to an increase in modulus and crystalline fractions. For sulfur vulcanization, the additional heat treatment (postvulcanization) increased the interactions between rubber particles and unreacted vulcanizing agents. For peroxide vulcanization, the additional heat treatment led to chain scission reactions and degradation of network points. © 2012 American Chemical Society.
ISSN: 00249297
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.