Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThomas A. Manzen_US
dc.contributor.authorJames M. Caruthersen_US
dc.contributor.authorShalini Sharmaen_US
dc.contributor.authorKhamphee Phomphraien_US
dc.contributor.authorKendall T. Thomsonen_US
dc.contributor.authorW. Nicholas Delgassen_US
dc.contributor.authorMahdi M. Abu-Omaren_US
dc.contributor.otherSchool of Chemical Engineeringen_US
dc.contributor.otherPurdue University College of Scienceen_US
dc.contributor.otherGeorgia Institute of Technologyen_US
dc.contributor.otherMahidol Universityen_US
dc.identifier.citationOrganometallics. Vol.31, No.2 (2012), 602-618en_US
dc.description.abstractWe have determined what makes the first monomer insertion (initiation) facile or slow for many homogeneous olefin polymerization catalysts. Specifically, we have developed the first comprehensive and mech anistically detailed quantitative structureactivity relationship (QSAR) that successfully predicts relative chain initiation to propagation rates for a large series of group 4 single-site olefin polymerization catalysts. This QSAR correctly predicts (a) whether initiation is facile or slow and (b) the ki/kp ratio for a catalyst family with slow initiation. Monomer concentration versus time profiles were measured for batch polymerization of 1-hexene catalyzed by 27 CpTi(OAr)Me2 and Cp*Zr(OC6H-2,3,5,6-Ph4)J2 (J = Me, CH2Ph) complexes activated with B(C6F5)3. Comparison of DFT calculations to experimental data revealed that the underlying cause of slow versus facile initiation is the difference in docking site opening sizes between the initiation kinetically dominant ion pair (i-KDIP) and the propagation kinetically dominant ion pair (p-KDIP). Specifically, initiation is facile if the i-KDIP and p- KDIP have similar docking site opening sizes or the i-KDIP docking site opening is not small but slow if the i-KDIP has a small docking site opening and the p-KDIP has a much larger docking site opening. The ion pairing dynamics was strongly influenced by (a) the choice of solvent, (b) whether or not the catalyst exhibits opportunistic ligand coordination, and (c) the type of initiating group. DFT-computed transition states for selected systems confirmed the underlying chemical mechanism that gives rise to this QSAR. © 2012 American Chemical Society.en_US
dc.rightsMahidol Universityen_US
dc.titleStructureactivity correlation for relative chain initiation to propagation rates in single-site olefin polymerization catalysisen_US
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.