Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Testicular microvascularization in the common tree shrew (Tupaia glis) as revealed by vascular corrosion cast/SEM and by TEM
Authors: W. Pradidarcheep
S. Kongstaponkit
P. Waraklang
P. Chunhabundit
R. Somana
Mahidol University
Keywords: Health Professions;Medicine;Physics and Astronomy
Issue Date: 1-Aug-1998
Citation: Microscopy Research and Technique. Vol.42, No.3 (1998), 226-233
Abstract: Testicular angioarchitecture in lower primates has not been established and the route of androgens from Leydig cells entering the systemic circulation is still a matter of controversy. In the present study, the common tree shrew (Tupaia glis) was used as the model for vascular corrosion cast/SEM and conventional TEM studies. With vascular corrosion cast/SEM, it was revealed that while coursing in the spermatic cord, the testicular artery convoluted and gave off branches to supply the epididymis, the coverings of the spermatic cord and the pampiniform plexus. Upon approaching the testis, it encircled the organ, then penetrated into the testicular parenchyma near the rostro-medial pole before further dividing into arterioles that gave rise to capillary plexuses looping around the seminiferous tubules. These capillaries converged into the intratesticular venules, then into larger venules on ventral and dorsal surfaces of the testis and finally into the collecting veins on medial and lateral borders of the testis. In addition, the capillaries in the central or medullary portion of the gland collected the blood into the medullary venules and central (medullary) vein, respectively. The collecting veins as well as central vein joined together before dividing into pampiniform plexus. With transmission electron microscopy, the capillaries in the testis were shown to be of the thick basement membrane and continuous type. The Leydig cells were found adjacent to lymphatic vessels among the seminiferous tubules. This structure is compatible with the idea that most of the androgens drain into the lymphatic vessels rather than into the capillaries.
ISSN: 1059910X
Appears in Collections:Scopus 1991-2000

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.