Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/18913
Title: Dependence of reactive oxygen species and FLICE inhibitory protein on Lipofectamine-induced apoptosis in human lung epithelial cells
Authors: Lalana Kongkaneramit
Narong Sarisuta
Neelam Azad
Yongju Lu
Anand Krishnan V. Iyer
Liying Wang
Yon Rojanasakul
West Virginia University
Mahidol University
National Institute for Occupational Safety and Health
West Virginia University Robert C. Byrd Health Sciences Center
Keywords: Biochemistry, Genetics and Molecular Biology;Pharmacology, Toxicology and Pharmaceutics
Issue Date: 1-Jun-2008
Citation: Journal of Pharmacology and Experimental Therapeutics. Vol.325, No.3 (2008), 969-977
Abstract: Cationic liposomes such as Lipofectamine (LF) are widely used as nonviral gene delivery vectors; however, their clinical application is limited by their cytotoxicity. These agents have been shown to induce apoptosis as the primary mode of cell death, but their mechanism of action is not well understood. The present study investigated the mechanism of LF-induced apoptosis and examined the role of reactive oxygen species (ROS) in this process. We found that LF induced apoptosis of human epithelial H460 cells through a mechanism that involves caspase activation and ROS generation. Inhibition of caspase activity by pan-caspase inhibitor (z-VAD-fmk) or by specific caspase-8 inhibitor (z-IETD-fmk) or caspase-9 inhibitor (z-LEHD-fmk) inhibited the apoptotic effect of LF. Overexpression of FLICE-inhibitory protein (FLIP) or B-cell lymphoma-2, which are known inhibitors of the extrinsic and intrinsic death pathways, respectively, similarly inhibited apoptosis by LF. Induction of apoptosis by LF was shown to require ROS generation because its inhibition by ROS scavengers or by ectopic expression of antioxidant enzyme superoxide dismutase and glutathione peroxidase strongly inhibited the apoptotic effect of LF. Electron spin resonance studies showed that LF induced multiple ROS; however, superoxide was found to be the primary ROS responsible for LF-induced apoptosis. The mechanism by which ROS mediate the apoptotic effect of LF involves down-regulation of FLIP through the ubiquitination pathway. In demonstrating the role of FLIP and ROS in LF death signaling, we document a novel mechanism of apoptosis regulation that may be exploited to decrease cytotoxicity and increase gene transfection efficiency of cationic liposomes.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=44249116184&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/18913
ISSN: 15210103
00223565
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.