Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/19180
Title: Josephson current in a graphene SG/ferromagnetic barrier/SG junction
Authors: Bumned Soodchomshom
I. Ming Tang
Rassmidara Hoonsawat
Mahidol University
Keywords: Energy;Engineering;Materials Science;Physics and Astronomy
Issue Date: 15-Dec-2008
Citation: Physica C: Superconductivity and its Applications. Vol.468, No.24 (2008), 2361-2365
Abstract: The Josephson current passing through a SG1/FB/SG2graphene junction, where SG and FBare those parts of a graphene layer which are induced into the superconducting state and into the ferromagnetic state, respectively, and where the small thickness of the FBlayer L is studied. The ferromagnetic barrier strength is taken to be given by χH∼ HL/ℏvF, where H is the strength of the exchange energy and vF∼ 106m/s is the Fermi velocity of quasiparticles. The eigenstates of the relativistic quasiparticles in the graphene are taken to be the solutions of the Dirac Bogoliubov-de Gennes equations. It is found that the energy levels of the Andreev bound states for the Weyl-Dirac particles in the SG1/FB/SG2junction are independent of the direction of the spins and that they depend on the strength of ferromagnetic barrier potential. The critical supercurrent is seen to vary in an oscillatory (periodic) manner as χHis varied. The oscillatory behavior of the critical supercurrent carried by the Cooper pairs formed by massless the Weyl-Dirac particles is different from the behavior of the supercurrent carried by the Cooper pairs formed by non-relativistic particles in a conventional SC/FI/SC (FI being a ferromagnetic insulator) junction. In those types of junctions, the supercurrent does not exhibit a similar oscillatory dependence. © 2008 Elsevier B.V. All rights reserved.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=56149098862&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/19180
ISSN: 09214534
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.