Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/19423
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPiyapong Niamsupen_US
dc.contributor.authorYongwimon Lenburyen_US
dc.contributor.otherChiang Mai Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-07-12T02:34:47Z-
dc.date.available2018-07-12T02:34:47Z-
dc.date.issued2008-01-01en_US
dc.identifier.citationKyungpook Mathematical Journal. Vol.48, No.2 (2008), 173-181en_US
dc.identifier.issn12256951en_US
dc.identifier.other2-s2.0-77952124402en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77952124402&origin=inwarden_US
dc.identifier.urihttp://repository.li.mahidol.ac.th/dspace/handle/123456789/19423-
dc.description.abstractWe give the necessary and sufficient conditions for the asymptotic stability of the linear delay difference equation xn+1-a2xn-1+bxn-k= 0, n=0, 1, ..., where a and b are arbitrary real numbers and k is a positive integer greater than 1. The obtained conditions are given in terms of parameters a and b of difference equations. The method of proof is based on arithematic of complex numbers as well as properties of analytic functions.en_US
dc.rightsMahidol Universityen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77952124402&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleThe asymptotic stability of x<inf>n+1</inf>-a<sup>2</sup>x<inf>n-1</inf>+bx<inf>n-k</inf>=0en_US
dc.typeArticleen_US
dc.rights.holderSCOPUSen_US
dc.identifier.doi10.5666/KMJ.2008.48.2.173en_US
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.