Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: EDTA-induced membrane fluidization and destabilization: Biophysical studies on artificial lipid membranes
Authors: Virapong Prachayasittikul
Chartchalerm Isarankura-Na-Ayudhya
Tanawut Tantimongcolwat
Chanin Nantasenamat
Hans Joachim Galla
Mahidol University
Westfalische Wilhelms-Universitat Munster
Keywords: Biochemistry, Genetics and Molecular Biology
Issue Date: 1-Nov-2007
Citation: Acta Biochimica et Biophysica Sinica. Vol.39, No.11 (2007), 901-913
Abstract: The molecular mechanism of ethylenediaminetetraacetic acid (EDTA)-induced membrane destabilization has been studied using a combination of four biophysical techniques on artificial lipid membranes. Data from Langmuir film balance and epifluorescence microscopy revealed the fluidization and expansion effect of EDTA on phase behavior of monolayers of either 1,2-dipalmitoyl-sn- glycero-3-phosphocholine (DPPC) or mixtures of DPPC and metal-chelating lipids, such as Nα, Nα-Bis[carboxymethyl]-N ε-[(dioctadecylamino)succinyl]-L-lysine or 1,2-dioleoyl-sn- glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid) succinyl]. A plausible explanation could be drawn from the electrostatic interaction between negatively charged groups of EDTA and the positively charged choline head group of DPPC. Intercalation of EDTA into the lipid membrane induced membrane curvature as elucidated by atomic force microscopy. Growth in size and shape of the membrane protrusion was found to be time-dependent upon exposure to EDTA. Further loss of material from the lipid membrane surface was monitored in real time using a quartz crystal microbalance. This indicates membrane restabilization by exclusion of the protrusions from the surface. Loss of lipid components facilitates membrane instability, leading to membrane permeabilization and lysis. © 2007 Institute of Biochemistry and Cell Biology, SIBS, CAS.
ISSN: 17457270
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.