Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/24112
Title: Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo
Authors: Hathaitip Sritanaudomchai
Kanok Pavasuthipaisit
Yindee Kitiyanant
Piengchai Kupradinun
Shoukhrat Mitalipov
Thanit Kusamran
Mahidol University
The Institute of Science and Technology for Research and Development, Mahidol University
National Cancer Institute Thailand
Oregon National Primate Research Center
Keywords: Biochemistry, Genetics and Molecular Biology
Issue Date: 1-Oct-2007
Citation: Molecular Reproduction and Development. Vol.74, No.10 (2007), 1295-1302
Abstract: Embryonic stem (ES) cells derived from mammalian embryos have the ability to form any terminally differentiated cell of the body. We herein describe production of parthenogenetic buffalo (Bubalus Bubalis) blastocysts and subsequent isolation of an ES cell line. Established parthenogenetic ES (PGES) cells exhibited diploid karyotype and high telomerase activity. PGES cells showed remarkable long-term proliferative capacity providing the possibility for unlimited expansion in culture. Furthermore, these cells expressed key ES cell-specific markers defined for primate species including stage-specific embryonic antigen-4 (SSEA-4), tumor rejection antigen-1-81 (TRA-1-81), and octamer-binding transcription factor 4 (Oct-4). In vitro, in the absence of a feeder layer, cells readily formed embryoid bodies (EBs). When cultured for an extended period of time, EBs spontaneously differentiated into derivatives of three embryonic germ layers as detected by PCR for ectodermal (nestin, oligodendrocytes, and tubulin), mesodermal (scleraxis, α-skeletal actin, collagen II, and osteocalcin) and endodermal markers (insulin and α-fetoprotein). Differentiation of PGES cells toward chondrocyte lineage was directed by supplementing serum-containing media with ascorbic acid, β-glycerophosphate, and dexamethasone. Moreover, when PGES cells were injected into nude mice, teratomas with derivatives representing all three embryonic germ layers were produced. Our results suggest that the cell line isolated from a parthenogenetic blastocyst holds properties of ES cells, and can be used as an in vitro model to study the effects of imprinting on cell differentiation and as an a invaluable material for extensive molecular studies on imprinted genes. © 2007 Wiley-Liss, Inc.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=35848947712&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/24112
ISSN: 10982795
1040452X
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.