Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/25947
Title: Cerebral microvascular architecture in the common tree shrew (Tupaia glis) revealed by plastic corrosion casts
Authors: Raksawan Poonkhum
Sirinun Pongmayteegul
Wipapan Meeratana
Wisuit Pradidarcheep
Sakporn Thongpila
Thaworn Mingsakul
Reon Somana
Mahidol University
Srinakharinwirot University
Keywords: Health Professions;Medicine;Physics and Astronomy
Issue Date: 1-Sep-2000
Citation: Microscopy Research and Technique. Vol.50, No.5 (2000), 411-418
Abstract: The vascularization of the cerebrum (cerebral cortex and basal ganglia) in the common tree shrew (Tupaia glis) has been studied in detail using vinyl injection and vascular corrosion cast/SEM techniques. It is found that the arterial supply of the cerebral cortex are from cortical branches of the middle cerebral artery (MCA) and of the anterior cerebral artery (ACA). These arteries are in turn branches of the internal carotid artery (ICA). In addition, the cerebral cortex receives the blood from the cortical branches of the posterior cerebral artery (PCA) that originates from the basilar artery (BA). These cortical arteries gives rise to rectilinear orientated intracortical arteries that are divided into dense capillary networks to supply the cerebral cortex. The capillary networks drain the blood into intracortical veins and then into the tributaries of major superficial cerebral veins. The basal ganglia (caudate and lentiform nuclei) are supplied by central or perforating branches of the ACA and MCA. These central or medullary arteries give rise to arterioles that ramify into dense capillary plexuses. The venous blood from both nuclei drains into venules and finally into the tributaries of internal cerebral veins. It is obvious that on the ventral aspect, the diameter of the lateral striate artery (LSA) and of the penetrating arterioles from the MCA are much smaller than that of the MCA. These arterioles have few side branches while the peripheral branches of the superficial cerebral arteries exhibit several series of branches that are gradually reduced in diameter before branching into intracortical arteries. This could be one of the reasons why the rupture of cerebral arteries in man mostly occurs in the those originating from the ventral surface rather than from the dorsolateral surface. (C) 2000 Wiley-Liss, Inc.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033848408&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/25947
ISSN: 1059910X
Appears in Collections:Scopus 1991-2000

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.