Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/28611
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDavid M. Gooden_US
dc.contributor.authorPetra Zürbigen_US
dc.contributor.authorÀngel Argilésen_US
dc.contributor.authorHartwig W. Baueren_US
dc.contributor.authorGeorg Behrensen_US
dc.contributor.authorJoshua J. Coonen_US
dc.contributor.authorMohammed Daknaen_US
dc.contributor.authorStéphane Decrameren_US
dc.contributor.authorChristian Dellesen_US
dc.contributor.authorAnna F. Dominiczaken_US
dc.contributor.authorJochen H.H. Ehrichen_US
dc.contributor.authorFrank Eitneren_US
dc.contributor.authorDanilo Fliseren_US
dc.contributor.authorMoritz Frommbergeren_US
dc.contributor.authorArnold Ganseren_US
dc.contributor.authorMark A. Girolamien_US
dc.contributor.authorIgor Golovkoen_US
dc.contributor.authorWilfried Gwinneren_US
dc.contributor.authorMarion Haubitzen_US
dc.contributor.authorStefan Herget-Rosenthalen_US
dc.contributor.authorJoachim Jankowskien_US
dc.contributor.authorHolger Jahnen_US
dc.contributor.authorGeorge Jerumsen_US
dc.contributor.authorBruce A. Julianen_US
dc.contributor.authorMarkus Kellmannen_US
dc.contributor.authorVolker Kliemen_US
dc.contributor.authorWalter Kolchen_US
dc.contributor.authorAndrzej S. Krolewskien_US
dc.contributor.authorMario Luppien_US
dc.contributor.authorZiad Massyen_US
dc.contributor.authorMichael Melteren_US
dc.contributor.authorChristian Neusüssen_US
dc.contributor.authorJan Novaken_US
dc.contributor.authorKarlheinz Peteren_US
dc.contributor.authorKasper Rossingen_US
dc.contributor.authorHarald Rupprechten_US
dc.contributor.authorJoost P. Schanstraen_US
dc.contributor.authorEric Schifferen_US
dc.contributor.authorJens Uwe Stolzenburgen_US
dc.contributor.authorLise Tarnowen_US
dc.contributor.authorDan Theodorescuen_US
dc.contributor.authorVisith Thongboonkerden_US
dc.contributor.authorRaymond Vanholderen_US
dc.contributor.authorEva M. Weissingeren_US
dc.contributor.authorHarald Mischaken_US
dc.contributor.authorPhilippe Schmitt-Kopplinren_US
dc.contributor.otherUniversity of Wisconsin Madisonen_US
dc.contributor.otherMosaiques Diagnostics and Therapeutics AGen_US
dc.contributor.otherRD Néphrologieen_US
dc.contributor.otherLudwig-Maximilians-Universitat Munchenen_US
dc.contributor.otherMedizinische Hochschule Hannover (MHH)en_US
dc.contributor.otherInsermen_US
dc.contributor.otherHopital des Enfantsen_US
dc.contributor.otherUniversity of Glasgowen_US
dc.contributor.otherMedizinische Fakultat und Universitats Klinikum Aachenen_US
dc.contributor.otherUniversitatsklinikum des Saarlandes Medizinische Fakultat der Universitat des Saarlandesen_US
dc.contributor.otherHelmholtz Center Munich German Research Center for Environmental Healthen_US
dc.contributor.otherRed Cross Hospitalen_US
dc.contributor.otherCharité – Universitätsmedizin Berlinen_US
dc.contributor.otherUniversitatsklinikum Hamburg-Eppendorf und Medizinische Fakultaten_US
dc.contributor.otherUniversity of Melbourneen_US
dc.contributor.otherUniversity of Alabamaen_US
dc.contributor.otherThermo Fisher Scientific, Germanyen_US
dc.contributor.otherLower Saxony Centre for Nephrologyen_US
dc.contributor.otherUniversity College Dublinen_US
dc.contributor.otherJoslin Diabetes Centeren_US
dc.contributor.otherHarvard Medical Schoolen_US
dc.contributor.otherUniversita degli Studi di Modena e Reggio Emiliaen_US
dc.contributor.otherCHU Amiens Picardieen_US
dc.contributor.otherUniversitat Regensburgen_US
dc.contributor.otherUniversity of Aalenen_US
dc.contributor.otherBaker Heart and Diabetes Instituteen_US
dc.contributor.otherSteno Diabetes Centeren_US
dc.contributor.otherTransfusion Centre Bayreuthen_US
dc.contributor.otherUniversitat Leipzigen_US
dc.contributor.otherUniversity of Virginiaen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversity Hospital of Ghenten_US
dc.contributor.otherUniversity Colorado Cancer Centeren_US
dc.date.accessioned2018-09-24T08:41:54Z-
dc.date.available2018-09-24T08:41:54Z-
dc.date.issued2010-11-01en_US
dc.identifier.citationMolecular and Cellular Proteomics. Vol.9, No.11 (2010), 2424-2437en_US
dc.identifier.issn15359484en_US
dc.identifier.issn15359476en_US
dc.identifier.other2-s2.0-78149291420en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78149291420&origin=inwarden_US
dc.identifier.urihttp://repository.li.mahidol.ac.th/dspace/handle/123456789/28611-
dc.description.abstractBecause of its availability, ease of collection, and correlation with physiology and pathology, urine is an attractive source for clinical proteomics/peptidomics. However, the lack of comparable data sets from large cohorts has greatly hindered the development of clinical proteomics. Here, we report the establishment of a reproducible, high resolution method for peptidome analysis of naturally occurring human urinary peptides and proteins, ranging from 800 to 17,000 Da, using samples from 3,600 individuals analyzed by capillary electrophoresis coupled to MS. All processed data were deposited in an Structured Query Language (SQL) database. This database currently contains 5,010 relevant unique urinary peptides that serve as a pool of potential classifiers for diagnosis and monitoring of various diseases. As an example, by using this source of information, we were able to define urinary peptide biomarkers for chronic kidney diseases, allowing diagnosis of these diseases with high accuracy. Application of the chronic kidney disease-specific biomarker set to an independent test cohort in the subsequent replication phase resulted in 85.5% sensitivity and 100% specificity. These results indicate the potential usefulness of capillary electrophoresis coupled to MS for clinical applications in the analysis of naturally occurring urinary peptides. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.en_US
dc.rightsMahidol Universityen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78149291420&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.titleNaturally occurring human urinary peptides for use in diagnosis of chronic kidney diseaseen_US
dc.typeArticleen_US
dc.rights.holderSCOPUSen_US
dc.identifier.doi10.1074/mcp.M110.001917en_US
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.