Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Quartz crystal microbalance-based biosensor for the detection of α-thalassemia 1 (SEA deletion)
Authors: Sirinart Chomean
Tiparat Potipitak
Chamras Promptmas
Wanida Ittarat
Mahidol University
Keywords: Biochemistry, Genetics and Molecular Biology;Medicine
Issue Date: 1-Sep-2010
Citation: Clinical Chemistry and Laboratory Medicine. Vol.48, No.9 (2010), 1247-1254
Abstract: Background: DNA piezoelectric biosensors have become a promising tool in molecular medicine since they do not require any label or staining. Here, a DNA piezoelectric biosensor based on a quartz crystal microbalance (QCM) was created to identify abnormal genes causing α-thalassemia 1 (SEA deletion). Methods: The functionalized gold electrode of the quartz crystal was coated with avidin and the biotinylated DNA probe was attached. The target gene causing α-thalassemia 1 was amplified and hybridized with the immobilized probe. DNA hybridization was indicated by changes in the quartz resonance frequencies. Diagnostic ability of the new α-thalassemia 1 biosensor was validated using both known and unknown blood samples. Specificity was tested using samples of β-thalassemia and α-thalassemia 2. Stability of the sensor was also evaluated. Results: The new biosensor could clearly identify α-thalassemia 1 (SEA deletion), both carrier and disease states, from the normal genotype. Identification accuracy was compatible to the standard gel electrophoresis. It was specific only to α-thalassemia 1 since no cross reaction was found with β-thalassemia and α-thalassemia 2. The sensor could be kept at room temperature up to 6 months with consistent identification accuracy. Conclusions: The label free QCM based biosensor was successfully developed to diagnose an abnormal human globin gene causing α-thalassemia 1 (SEA deletion). Its accuracy, specificity and sensitivity were comparable to the standard method. Its stable diagnostic potency up to 6 months implied its field application in thalassemic control program. © 2010 by Walter de Gruyter Berlin New York.
ISSN: 14374331
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.