Please use this identifier to cite or link to this item:
Title: Chemical and structural investigation of lipid nanoparticles: Drug-lipid interaction and molecular distribution
Authors: Suranan Anantachaisilp
Siwaporn Meejoo Smith
Alongkot Treetong
Sirapat Pratontep
Satit Puttipipatkhachorn
Uracha Rungsardthong Ruktanonchai
Mahidol University
Thailand National Science and Technology Development Agency
King Mongkut's Institute of Technology Ladkrabang
Keywords: Chemical Engineering;Chemistry;Engineering;Materials Science
Issue Date: 19-Mar-2010
Citation: Nanotechnology. Vol.21, No.12 (2010)
Abstract: Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 8121as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and lipids (solid and liquid) inside the lipid nanoparticle systems are proposed. © 2010 IOP Publishing Ltd.
ISSN: 13616528
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.