Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: An FDTD interaction scheme of a high-intensity nanosecond-pulsed electric-field system for in vitro cell apoptosis applications
Authors: Phumin Kirawanich
Nonthalee Pausawasdi
Chatchawan Srisawat
Susumu J. Yakura
Naz E. Islam
Mahidol University
Kirtland Air Force Base
University of Missouri-Columbia
Keywords: Physics and Astronomy
Issue Date: 1-Oct-2010
Citation: IEEE Transactions on Plasma Science. Vol.38, No.10 PART 1 (2010), 2574-2582
Abstract: A finite-difference time-domain analysis of a high-intensity nanosecond-pulsed electric-field (nsPEF) system, composed of a pulse-forming line (PFL) and a universal electroporation cuvette, is described. The simulation scheme is based on interactions of 1-D transmission-line equations for the PFL and 3-D Maxwell's curl equations for the cuvette volume. Simulations incorporate system adjustment to facilitate maximum transfer of electrical energy from the PFL to the cuvette medium. Experimental validation of the voltage across the cuvette electrodes through the laboratory-constructed nsPEF system with an energy density of ∼1 J/cm3reveals an overall agreement with some discrepancies. The distribution profiles of the transient field inside the cell suspension area during the excitation of 5-kV 10-ns pulses would adequately account for the feasibility of using an integrated model as a design benchmark for the interaction physics of the generated nanosecond pulses and culture vessel. The observed nsPEF effects on cells include increased transmembrane potentials across organelle membranes without permanently damaging the cell membrane, increasing the probability of electric field interactions with intracellular structures. © 2010 IEEE.
ISSN: 00933813
Appears in Collections:Scopus 2006-2010

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.