Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Computation of the domain of attraction for suboptimal immunity epidemic models using the maximal lyapunov function method
Authors: Chang Phang
Yonghong Wu
Benchawan Wiwatanapataphee
Universiti Tun Hussein Onn Malaysia
Curtin University
Mahidol University
Keywords: Mathematics
Issue Date: 2-Apr-2013
Citation: Abstract and Applied Analysis. Vol.2013, (2013)
Abstract: We are concerned with the estimation of the domain of attraction (DOA) for suboptimal immunity epidemic models. We establish a procedure to determine the maximal Lyapunov function in the form of rational functions. Based on the definition of DOA and the maximal Lyapunov function, a theorem and subsequently a numerical procedure are established to determine the maximal Lyapunov function and the DOA. Determination of the domain of attraction for epidemic models is very important for understanding the dynamic behaviour of the disease transmission as a function of the state of population distribution in different categories of disease states. We focus on suboptimal immunity epidemic models with saturated treatment rate and nonlinear incidence rate. Different from classical models, suboptimal immunity models are more realistic to explain the microparasite infection diseases such as Pertussis and Influenza A. We show that, for certain values of the parameter, larger k value (i.e., the model is more toward the SIR model) leads to a smaller DOA. © 2013 Chang Phang et al.
ISSN: 16870409
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.