Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Transglutaminase 2 accelerates vascular calcification in chronic kidney disease
Authors: Neal X. Chen
Kalisha O'Neill
Xianming Chen
Kraiwiporn Kiattisunthorn
Vincent H. Gattone
Sharon M. Moe
Indiana University School of Medicine Indianapolis
VA Medical Center
Mahidol University
Keywords: Medicine
Issue Date: 1-Apr-2013
Citation: American Journal of Nephrology. Vol.37, No.3 (2013), 191-198
Abstract: Background: Transglutaminase 2 (TGM2) is a calcium-dependent enzyme that can cross-link nearly all extracellular matrix (ECM) proteins and can facilitate cell-ECM interaction through integrins. Given the importance of the ECM in vascular calcification we tested the hypothesis that increased TGM2 activity may accelerate vascular calcification in chronic kidney disease (CKD). Methods: We utilized thoracic aortas and vascular smooth muscle cells (VSMC) from the Cy/+ rat, a model of progressive CKD that develops arterial calcification on a normal phosphorus diet, compared to normal rats. Results: VSMC isolated from CKD rats had increased expression and activity of TGM2 compared to cells from normal rats. The increased calcification and expression of alkaline phosphatase activity observed in VSMC from CKD rats compared to normal was inhibited in a dose-dependent manner with the TGM inhibitors cystamine and Z006. Matrix vesicles (MV) from CKD rat VSMC also had increased TGM2 expression and the calcification of MV on type I collagen could be inhibited with cystamine and accelerated by exogenous cross-linking of fibronectin or type I collagen with TGM2. Finally, the calcification of aorta rings from CKD rats in ex vivo cultures was inhibited with TGM2 inhibitor. Conclusion: These data demonstrate a role of TGM2 in the pathogenesis of vascular calcification in CKD through enhancement of MV-ECM calcification. Copyright © 2013 S. Karger AG, Basel.
ISSN: 14219670
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.