Please use this identifier to cite or link to this item:
Title: The cultural divide: Exponential growth in classical 2D and metabolic equilibrium in 3D environments
Authors: Krzysztof Wrzesinski
Adelina Rogowska-Wrzesinska
Rattiyaporn Kanlaya
Kamil Borkowski
Veit Schwämmle
Jie Dai
Kira Eyd Joensen
Katarzyna Wojdyla
Vasco Botelho Carvalho
Stephen J. Fey
Syddansk Universitet
Kobenhavns Universitet
Mahidol University
Keywords: Agricultural and Biological Sciences;Biochemistry, Genetics and Molecular Biology
Issue Date: 15-Sep-2014
Citation: PLoS ONE. Vol.9, No.9 (2014)
Abstract: © 2014 PLOS ONE. Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different.Results: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell - along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex.Summary: We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.
ISSN: 19326203
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.