Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors
Authors: Apilak Worachartcheewan
Prasit Mandi
Virapong Prachayasittikul
Alla P. Toropova
Andrey A. Toropov
Chanin Nantasenamat
Mahidol University
Istituto di Ricerche Farmacologiche Mario Negri
Keywords: Chemical Engineering;Chemistry;Computer Science
Issue Date: 15-Nov-2014
Citation: Chemometrics and Intelligent Laboratory Systems. Vol.138, (2014), 120-126
Abstract: Aromatase inhibitors (AIs) represent a promising therapeutic class of anticancer agents against estrogen receptor-positive breast cancer. Bioactivity data on pIC50of 973 AIs were employed in the construction of quantitative structure-activity relationship (QSAR) models using COR relation And Logic (CORAL) software ( in which molecular structures are represented by the simplified molecular input line entry system (SMILES) notation. Symbols inherently present in SMILES nomenclatures describe the presence of molecular fragments and therefore represent a facile approach that essentially eliminate the need to geometrically optimize molecular structures or the hassle of computing and selecting molecular descriptors. Predictive models were built in accordance with the OECD principles. Monte Carlo optimization of correlation weights of such molecular fragments provides pertinent information on structural constituents for correlating with the aromatase inhibitory activity. Results from different splits and data sub-sets indicated reliable models for predicting and interpreting the origins of aromatase inhibitory activities with the correlation coefficient (R2) and cross-validated correlation coefficient (Q2) in ranges of 0.6271-0.7083 and 0.6218-0.7024, respectively. Insights gained from constructed models could aid in the future design of aromatase inhibitors. © 2014 Elsevier B.V.
ISSN: 18733239
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.