Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/34003
Title: The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei
Authors: Pornpan Pumirat
Usa Boonyuen
Muthita Vanaporn
Peechanika Pinweha
Sarunporn Tandhavanant
Sunee Korbsrisate
Narisara Chantratita
Mahidol University
Keywords: Immunology and Microbiology;Medicine
Issue Date: 2-Jan-2014
Citation: BMC Microbiology. Vol.14, No.1 (2014)
Abstract: Background: Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress. However, the importance of SDO in B. pseudomallei infection is unknown. This study aimed to explore the function of B. pseudomallei SDO, and to investigate its role in interactions between B. pseudomallei and host cells. Results: Bioinformatics analysis of B. pseudomallei SDO structure, based on homology modeling, revealed a NAD+cofactor domain and a catalytic triad containing Ser149, Tyr162, and Lys166. This is similar to Bacillus megaterium glucose 1-dehydrogenase. To investigate the role of this protein, we constructed a B. pseudomallei SDO defective mutant, measured glucose dehydrogenase (GDH) activity, and tested the interactions with host cells. The B. pseudomallei K96243 wild type exhibited potent GDH activity under condition containing 300 mM NaCl, while the mutant showed activity levels 15 times lower. Both invasion into the A549 cell line and early intracellular survival within the J774A.1 macrophage cell were impaired in the mutant. Complementation of SDO was able to restore the mutant ability to produce GDH activity, invade epithelial cells, and survive in macrophages. Conclusions: Our data suggest that induced SDO activity during salt stress may facilitate B. pseudomallei invasion and affect initiation of successful intracellular infection. Identifying the role of B. pseudomallei SDO provides a better understanding of the association between bacterial adaptation and pathogenesis in melioidosis. © 2014 Pumirat et al.; licensee BioMed Central Ltd.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84891864000&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/34003
ISSN: 14712180
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.