Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/35142
Title: Yeast surface display of two proteins previously shown to be protective against white spot syndrome virus (WSSV) in shrimp
Authors: Vorawit Ananphongmanee
Jiraporn Srisala
Kallaya Sritunyalucksana
Chuenchit Boonchird
Mahidol University
Thailand National Center for Genetic Engineering and Biotechnology
Keywords: Agricultural and Biological Sciences;Biochemistry, Genetics and Molecular Biology;Medicine
Issue Date: 17-Jun-2015
Citation: PLoS ONE. Vol.10, No.6 (2015)
Abstract: © 2015 Ananphongmanee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral administration.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84939159890&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/35142
ISSN: 19326203
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.