Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/35458
Title: Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization
Authors: Pawasuth Saengdee
Woraphan Chaisriratanakul
Win Bunjongpru
Witsaroot Sripumkhai
Awirut Srisuwan
Wutthinan Jeamsaksiri
Charndet Hruanun
Amporn Poyai
Chamras Promptmas
Mahidol University
Thai Microelectronics Center (TMEC)
Keywords: Biochemistry, Genetics and Molecular Biology;Chemistry;Engineering
Issue Date: 5-May-2015
Citation: Biosensors and Bioelectronics. Vol.67, (2015), 134-138
Abstract: © 2014 Elsevier B.V. Three different types of surface, silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium oxynitride (TiON) were modified for lactate dehydrogenase (LDH) immobilization using (3-aminopropyl)triethoxysilane (APTES) to obtain an amino layer on each surface. The APTES modified surfaces can directly react with LDH via physical attachment. LDH can be chemically immobilized on those surfaces after incorporation with glutaraldehyde (GA) to obtain aldehyde layers of APTES-GA modified surfaces. The wetting properties, chemical bonding composition, and morphology of the modified surface were determined by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM), respectively. In this experiment, the immobilized protein content and LDH activity on each modified surface was used as an indicator of surface modification achievement. The results revealed that both the APTES and APTES-GA treatments successfully link the LDH molecule to those surfaces while retaining its activity. All types of tested surfaces modified with APTES-GA gave better LDH immobilizing efficiency than APTES, especially the SiO2surface. In addition, the SiO2surface offered the highest LDH immobilization among tested surfaces, with both APTES and APTES-GA modification. However, TiON and Si3N4surfaces could be used as alternative candidate materials in the preparation of ion-sensitive field-effect transistor (ISFET) based biosensors, including lactate sensors using immobilized LDH on the ISFET surface.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84922336417&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/35458
ISSN: 18734235
09565663
Appears in Collections:Scopus 2011-2015

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.