Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/42159
Title: ChREBP Regulates Itself and Metabolic Genes Implicated in Lipid Accumulation in β-Cell Line
Authors: Chanachai Sae-Lee
Kanya Moolsuwan
Lawrence Chan
Naravat Poungvarin
Mahidol University
Baylor College of Medicine
Keywords: Agricultural and Biological Sciences;Biochemistry, Genetics and Molecular Biology
Issue Date: 1-Jan-2016
Citation: PloS one. Vol.11, No.1 (2016), e0147411
Abstract: Carbohydrate response element binding protein (ChREBP) is an important transcription factor that regulates a variety of glucose-responsive genes in hepatocytes. To date, only two natural isoforms, Chrebpα and Chrebpβ, have been identified. Although ChREBP is known to be expressed in pancreatic β cells, most of the glucose-responsive genes have never been verified as ChREBP targets in this organ. We aimed to explore the impact of ChREBP expression on regulating genes linked to accumulation of lipid droplets, a typical feature of β-cell glucotoxicity. We assessed gene expression in 832/13 cells overexpressing constitutively active ChREBP (caChREBP), truncated ChREBP with nearly identical amino acid sequence to Chrebpβ, or dominant negative ChREBP (dnChREBP). Among multiple ChREBP-controlled genes, ChREBP was sufficient and necessary for regulation of Eno1, Pklr, Mdh1, Me1, Pdha1, Acly, Acaca, Fasn, Elovl6, Gpd1, Cpt1a, Rgs16, Mid1ip1,Txnip, and Chrebpβ. Expression of Chrebpα and Srebp1c were not changed by caChREBP or dnChREBP. We identified functional ChREBP binding sequences that were located on the promoters of Chrebpβ and Rgs16. We also showed that Rgs16 overexpression lead to increased considerable amounts of lipids in 832/13 cells. This phenotype was accompanied by reduction of Cpt1a expression and slight induction of Fasn and Pklr gene in these cells. In summary, we conclude that Chrebpβ modulates its own expression, not that of Chrebpα; it also regulates the expression of several metabolic genes in β-cells without affecting SREBP-1c dependent regulation. We also demonstrate that Rgs16 is one of the ChREBP-controlled genes that potentiate accumulation of lipid droplets in β-cells.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992192994&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/42159
ISSN: 19326203
Appears in Collections:Scopus 2016-2017

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.