Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Increasing Distribution of Drugs Released from In Situ Forming PLGA Implants Using Therapeutic Ultrasound
Authors: Chawan Manaspon
Christopher Hernandez
Pinunta Nittayacharn
Selva Jeganathan
Norased Nasongkla
Agata A. Exner
Mahidol University
Case Western Reserve University
Keywords: Engineering
Issue Date: 1-Dec-2017
Citation: Annals of Biomedical Engineering. Vol.45, No.12 (2017), 2879-2887
Abstract: © 2017, Biomedical Engineering Society. One of the challenges in developing sustained-release local drug delivery systems is the limited treatment volume that can be achieved. In this work, we examine the effectiveness of using low frequency, high intensity ultrasound to promote the spatial penetration of drug molecules away from the implant/injection site boundary upon release from injectable, phase inverting poly(lactic acid-co-glycolic acid) (PLGA) implants. Fluorescein-loaded PLGA solutions were injected into poly(acrylamide) phantoms, and the constructs were treated daily for 14 days with ultrasound at 2.2 W/cm2 for 10 min. The 2D distribution of fluorescein within the phantoms was quantified using fluorescence imaging. Implants receiving ultrasound irradiation showed a 1.7–5.6 fold increase (p < 0.05) in fluorescence intensity and penetration distance, with the maximum increase observed 5 days post-implantation. However, this evidence was not seen when the same experiment was also carried out in phosphate buffer saline (pH 7.4). Results suggest an active role of ultrasound in local molecular transport in the phantom. An increase of fluorescein release and penetration depth in phantoms can be accomplished through brief application of ultrasound. This simple technique offers an opportunity to eventually enhance the therapeutic efficacy and broaden the application of local drug delivery systems.
ISSN: 15739686
Appears in Collections:Scopus 2016-2017

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.