Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Ethylene Epoxidation with Nitrous Oxide over Fe–BTC Metal–Organic Frameworks: A DFT Study
Authors: Thana Maihom
Saowapak Choomwattana
Sippakorn Wannakao
Michael Probst
Jumras Limtrakul
Kasetsart University
Mahidol University
Vidyasirimedhi Institute of Science and Technology
University of Innsbruck
Keywords: Chemistry
Issue Date: 4-Nov-2016
Citation: ChemPhysChem. Vol.17, No.21 (2016), 3416-3422
Abstract: © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim The epoxidation of ethylene with N2O over the metal-organic framework Fe–BTC (BTC=1,3,5-benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe–BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N2O to form an active surface oxygen atom on the Fe site of Fe–BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2-hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol−1, which is only about one-third of the activation energy of acetaldehyde formation (14.3 kcal mol−1). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2–4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe–BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N2O.
ISSN: 14397641
Appears in Collections:Scopus 2016-2017

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.