Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPauline Kiatmethaen_US
dc.contributor.authorCharoonroj Chotwiwatthanakunen_US
dc.contributor.authorPitchanee Jariyapongen_US
dc.contributor.authorWanida Santimanawongen_US
dc.contributor.authorPuey Ounjaien_US
dc.contributor.authorWattana Weerachatyanukulen_US
dc.contributor.otherWalailak Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.identifier.citationPeerJ. Vol.2018, No.12 (2018)en_US
dc.description.abstract© Copyright 2018 Kiatmetha et al. Background: A virus-like particle (VLP) is an excellent tool for a compound delivery system due to its simple composition, symmetrical structure and self-assembly. Its surface modification both chemically and genetically is established, leading to the target-specific delivery and improved encapsulation efficiency. However, its physical stabilities against many harsh conditions that guarantee long term storage and oral administration have been much less studied. Methods: IHHNV-VLPs were reconstructed from recombinant IHHNV capsid protein in E. coli. Their physical properties against three strong physical conditions including long term storage (0-30 days) in 4 °C, physical stabilities against broad ranged pH (4-9) and against three types of digestive enzymes were tested. Disassembly and reassembly of VLPs for encapsidating an enhanced green fluorescent protein tagged plasmid DNA (EGFP-VLPs) were controlled by the use of reducing agent (DTT) and calcium specific chelating agent (EGTA). Lastly, delivering ability of EGFP-VLPs was performed in vivo by intramuscular injection and traced the expression of GFP in the shrimp tissues 24 hr post-injection. Results: Upon its purification, IHHNV-VLPs were able to be kept at 4 °C up to 30 days with only slight degradation. They were very stable in basic condition (pH 8-9) and to a lesser extent in acidic condition (pH 4-6) while they could stand digestions of trypsin and chymotrypsin better than pepsin. As similar with many other non-enveloped viruses, the assembly of IHHNV-VLPs was dependent on both disulfide bridging and calcium ions which allowed us to control disassembly and reassembly of these VLPs to pack EGFP plasmid DNA. IHHNV-VLPs could deliver EGFP plasmids into shrimp muscles and gills as evident by RT-PCR and confocal microscopy demonstrating the expression of GFP in the targeted tissues. Discussion: There are extensive data in which capsid proteins of the non-enveloped viruses in the form of VLPs are constructed and used as nano-containers for therapeutic compound delivery. However, the bottleneck of its application as an excellent delivery container for oral administration would rely solely on physical stability and interacting ability of VLPs to the host cells. These properties are retained for IHHNV-VLPs reported herein. Thus, IHHNV-VLPs would stand as a good applicable nanocontainer to carry therapeutic agents towards the targeting tissues against ionic and digestive conditions via oral administration in aquaculture field.en_US
dc.rightsMahidol Universityen_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleNanocontainer designed from an infectious hypodermal and hematopoietic necrosis virus (IHHNV) has excellent physical stability and ability to deliver shrimp tissuesen_US
Appears in Collections:Scopus 2018

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.