Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrnpreya Suptawiwaten_US
dc.contributor.authorAlita Kongchanagulen_US
dc.contributor.authorChompunuch Boonarkarten_US
dc.contributor.authorPrasert Auewarakulen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherFaculty of Medicine, Siriraj Hospital, Mahidol Universityen_US
dc.contributor.otherChulabhorn Royal Academyen_US
dc.identifier.citationVirus Research. Vol.250, (2018), 43-50en_US
dc.description.abstract© 2018 Elsevier B.V. It was previously shown that the seasonal H1N1 influenza virus antigenic drift occurred at a slower rate than the seasonal H3N2 virus during the first decade of the 21th century. It was hypothesized that the slower antigenic evolution led to a decrease in average ages of infection, which in turn resulted in lower level of global viral circulation. It is unclear what caused the difference between the two viruses, but a plausible explanation may be related to the fact that the H1N1 virus had been in human population for much longer than the H3N2 virus. This would suggest that H1N1 antigenic drift in an earlier period may have been different from a more recent period. To test this hypothesis, we analyzed seasonal H1N1 influenza sequences during various time periods. In comparison to more recent H1N1 virus, the older H1N1 virus during the first half of the 20th century showed evidences of higher nonsynnonymous/synonymous ration (dN/dS) in its hemagglutinin (HA) gene. We compared amino acid sequence changes in the HA epitopes for each outbreak season and found that there were less changes in later years. Amino acid sequence diversity in the epitopes as measured by sequence entropy became smaller for each passing decade. These suggest that there might be some limit to the antigenic drift. The longer an influenza virus has drifted in human population, the less flexibility it may become. With less flexibility to adapt and escape the host immunity, the virus may have to rely more on younger naïve population.en_US
dc.rightsMahidol Universityen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectImmunology and Microbiologyen_US
dc.titleH1N1 seasonal influenza virus evolutionary rate changed over timeen_US
Appears in Collections:Scopus 2018

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.