Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Outer Wall Segmentation of Abdominal Aortic Aneurysm by Variable Neighborhood Search Through Intensity and Gradient Spaces
Authors: Thanongchai Siriapisith
Worapan Kusakunniran
Peter Haddawy
Mahidol University
Faculty of Medicine, Siriraj Hospital, Mahidol University
Keywords: Computer Science;Health Professions;Medicine
Issue Date: 1-Aug-2018
Citation: Journal of Digital Imaging. Vol.31, No.4 (2018), 490-504
Abstract: © 2018, Society for Imaging Informatics in Medicine. Aortic aneurysm segmentation remains a challenge. Manual segmentation is a time-consuming process which is not practical for routine use. To address this limitation, several automated segmentation techniques for aortic aneurysm have been developed, such as edge detection-based methods, partial differential equation methods, and graph partitioning methods. However, automatic segmentation of aortic aneurysm is difficult due to high pixel similarity to adjacent tissue and a lack of color information in the medical image, preventing previous work from being applicable to difficult cases. This paper uses uses a variable neighborhood search that alternates between intensity-based and gradient-based segmentation techniques. By alternating between intensity and gradient spaces, the search can escape from local optima of each space. The experimental results demonstrate that the proposed method outperforms the other existing segmentation methods in the literature, based on measurements of dice similarity coefficient and jaccard similarity coefficient at the pixel level. In addition, it is shown to perform well for cases that are difficult to segment.
ISSN: 1618727X
Appears in Collections:Scopus 2018

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.