Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/46014
Title: An innovative diagnostic technology for the codon mutation C580Y in kelch13 of Plasmodium falciparum with MinION nanopore sequencer
Authors: Kazuo Imai
Norihito Tarumoto
Lucky Ronald Runtuwene
Jun Sakai
Kyoko Hayashida
Yuki Eshita
Ryuichiro Maeda
Josef Tuda
Hideaki Ohno
Takashi Murakami
Shigefumi Maesaki
Yutaka Suzuki
Junya Yamagishi
Takuya Maeda
Sam Ratulangi University
Oita University
University of Tokyo
Osaka University
Saitama Medical University
Hokkaido University
Saitama Medical Center, Saitama Medical University
Mahidol University
Obihiro University of Agriculture and Veterinary Medicine
Keywords: Immunology and Microbiology;Medicine
Issue Date: 29-May-2018
Citation: Malaria Journal. Vol.17, No.1 (2018)
Abstract: © 2018 The Author(s). Background: The recent spread of artemisinin (ART)-resistant Plasmodium falciparum represents an emerging global threat to public health. In Southeast Asia, the C580Y mutation of kelch13 (k13) is the dominant mutation of ART-resistant P. falciparum. Therefore, a simple method for the detection of C580Y mutation is urgently needed to enable widespread routine surveillance in the field. The aim of this study is to develop a new diagnostic procedure for the C580Y mutation using loop-mediated isothermal amplification (LAMP) combined with the MinION nanopore sequencer. Results: A LAMP assay for the k13 gene of P. falciparum to detect the C580Y mutation was successfully developed. The detection limit of this procedure was 10 copies of the reference plasmid harboring the k13 gene within 60 min. Thereafter, amplicon sequencing of the LAMP products using the MinION nanopore sequencer was performed to clarify the nucleotide sequences of the gene. The C580Y mutation was identified based on the sequence data collected from MinION reads 30 min after the start of sequencing. Further, clinical evaluation of the LAMP assay in 34 human blood samples collected from patients with P. falciparum malaria in Indonesia revealed a positive detection rate of 100%. All LAMP amplicons of up to 12 specimens were simultaneously sequenced using MinION. The results of sequencing were consistent with those of the conventional PCR and Sanger sequencing protocol. All procedures from DNA extraction to variant calling were completed within 3 h. The C580Y mutation was not found among these 34 P. falciparum isolates in Indonesia. Conclusions: An innovative method combining LAMP and MinION will enable simple, rapid, and high-sensitivity detection of the C580Y mutation of P. falciparum, even in resource-limited situations in developing countries.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047728996&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/46014
ISSN: 14752875
Appears in Collections:Scopus 2018

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.