Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/46097
Title: Unitary–scaling decomposition and dissipative behaviour in finite-dimensional unital Lindblad dynamics
Authors: Fattah Sakuldee
Sujin Suwanna
Mahidol University
Keywords: Mathematics;Physics and Astronomy
Issue Date: 15-Sep-2018
Citation: Physica A: Statistical Mechanics and its Applications. Vol.506, (2018), 736-748
Abstract: © 2018 Elsevier B.V. We investigate a decomposition of a unital Lindblad dynamical map of an open quantum system into two distinct types of mapping on the Hilbert–Schmidt space of quantum states. One component of the decomposed map corresponds to reversible behaviours, while the other to irreversible characteristics. For a finite dimensional system, we employ real vectors or Bloch representations and express a dynamical map on the state space as a real matrix acting on the representation. It is found that rotation and scaling transformations on the real vector space, obtained from the real-polar decomposition, form building blocks for the dynamical map. Consequently, the change of the linear entropy or purity, which indicates dissipative behaviours, depends only on the scaling part of the dynamical matrix. The rate of change of the entropy depends on the structure of the scaling part of the dynamical matrix, such as eigensubspace partitioning, and its relationship with the initial state. In particular, the linear entropy is expressed as a weighted sum of the exponential-decay functions in each scaling component, where the weight is equal to |x→k(ρ)|2 of the initial state ρ in the subspace. The dissipative behaviours and the partition of eigensubspaces in the decomposition are discussed and illustrated for qubit systems.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046813848&origin=inward
http://repository.li.mahidol.ac.th/dspace/handle/123456789/46097
ISSN: 03784371
Appears in Collections:Scopus 2018

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.