Please use this identifier to cite or link to this item:
http://repository.li.mahidol.ac.th/dspace/handle/123456789/49922
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang Yong Ma | en_US |
dc.contributor.author | Warren Y. Brockelman | en_US |
dc.contributor.author | Lydia E.O. Light | en_US |
dc.contributor.author | Thad Q. Bartlett | en_US |
dc.contributor.author | Peng Fei Fan | en_US |
dc.contributor.other | Dali University | en_US |
dc.contributor.other | Sun Yat-Sen University | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Thailand National Center for Genetic Engineering and Biotechnology | en_US |
dc.contributor.other | The University of North Carolina at Charlotte | en_US |
dc.contributor.other | University of Texas at San Antonio | en_US |
dc.date.accessioned | 2020-01-27T07:31:11Z | - |
dc.date.available | 2020-01-27T07:31:11Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.citation | American Journal of Primatology. Vol.81, No.8 (2019) | en_US |
dc.identifier.issn | 10982345 | en_US |
dc.identifier.issn | 02752565 | en_US |
dc.identifier.other | 2-s2.0-85071111664 | en_US |
dc.identifier.uri | http://repository.li.mahidol.ac.th/dspace/handle/123456789/49922 | - |
dc.description.abstract | © 2019 Wiley Periodicals, Inc. According to the sexual selection hypothesis, infanticide during resident male replacement is an adaptive strategy that has evolved because the killing of unweaned offspring sired by previous males shortens the inter-birth intervals of the mothers whose infants are targeted and thereby increases the reproductive fitness of the perpetrator. To test this hypothesis, we describe previously unreported cases of primary male replacement for two gibbon species (Hylobates lar and Nomascus nasutus), and review all other reported cases of primary male replacement in gibbons. Overall, infants were present in nearly half of all cases (16/33, 48%) and of the 18 infants present during replacement, 50% (N = 9) disappeared within 2 months of the event. In four of the five cases where there was sufficient demographic information to identify the likely sire of the subsequent offspring of females that lost infants, the new male was believed to be the sire. Infants were also less likely to die or disappear if the new male and original resident male were possible kin. However, there was no significant difference in the age of infants between those that died or disappeared following replacement and those that survived to weaning (p =.630). Our review of takeover-related infant loss in gibbons confirms that periods of male instability are risky for unweaned infants and that replacing males benefit from infant loss. Nevertheless, variability in the context of infant loss and difficulties related to data collection in the field make it difficult to test competing hypotheses concerning the mechanisms and functions of infanticide in the small apes. | en_US |
dc.rights | Mahidol University | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071111664&origin=inward | en_US |
dc.subject | Agricultural and Biological Sciences | en_US |
dc.title | Infant loss during and after male replacement in gibbons | en_US |
dc.type | Review | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.identifier.doi | 10.1002/ajp.23036 | en_US |
dc.identifier.url | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071111664&origin=inward | en_US |
Appears in Collections: | Scopus 2019 |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.