Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Preconditioning exercise reduces brain damage and neuronal apoptosis through enhanced endogenous 14-3-3γ after focal brain ischemia in rats
Authors: Shotaro Otsuka
Harutoshi Sakakima
Takuto Terashi
Seiya Takada
Kazuki Nakanishi
Kiyoshi Kikuchi
Kagoshima University
Mahidol University
Kurume University School of Medicine
Keywords: Medicine
Issue Date: 4-Mar-2019
Citation: Brain Structure and Function. Vol.224, No.2 (2019), 727-738
Abstract: © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. 14-3-3γ is an important early ischemia-inducible protective factor against ischemic cell death in cerebral cortical neurons. We investigated the anti-apoptosis mechanism of enhanced 14-3-3γ mediated by preconditioning exercise-induced brain ischemic tolerance after stroke. Rats were assigned to four groups: exercise and ischemia (Ex group), ischemia and no exercise (No-Ex group), exercise and no ischemia (Ex-only group), and no exercise and ischemia (control group). Rats were trained on a treadmill for 5 days a week for 3 weeks (running speed, 25 m/min; running duration, 30 min/day). After the exercise program, stroke was induced by left middle cerebral artery occlusion. The infarct volume, neurological deficits, and motor function, as well as expression levels of hypoxia-induced factor-1α (HIF-1α), 14-3-3γ, P2X7 receptors, p-β-catenin Ser37, Bax, and caspase 3 were evaluated by immunohistochemistry and western blotting. The expression of HIF-1α and 14-3-3γ significantly increased in neurons and astrocytes in the Ex-only group. HIF-1α was co-expressed with P2X7 receptor- and GFAP-positive astrocytes. After stroke, the Ex group had significantly reduced brain infarction. HIF-1α and 14-3-3γ significantly increased in the Ex group compared to the No-Ex group. In addition, p-β-catenin Ser37 significantly increased following elevated 14-3-3γ; in contrast, Bax and caspase 3 were significantly reduced in the Ex group. Our findings suggest that preconditioning exercise prior to ischemia induces neuron- and astrocyte-mediated brain ischemic tolerance through increased expression of HIF-1α and 14-3-3γ, which are intrinsic protective factors; the upregulated 14-3-3γ induced by preconditioning exercise reduces ischemic neuronal cell death through the 14-3-3γ/p-β-catenin Ser37/Bax/caspase 3 anti-apoptotic pathway.
ISSN: 18632661
Appears in Collections:Scopus 2019

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.