Simple jQuery Dropdowns
Please use this identifier to cite or link to this item:
Title: Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow
Authors: M. Ajello
M. Arimoto
M. Axelsson
L. Baldini
G. Barbiellini
D. Bastieri
R. Bellazzini
A. Berretta
E. Bissaldi
R. D. Blandford
R. Bonino
E. Bottacini
J. Bregeon
P. Bruel
R. Buehler
E. Burns
S. Buson
R. A. Cameron
R. Caputo
P. A. Caraveo
E. Cavazzuti
S. Chen
G. Chiaro
S. Ciprini
J. Cohen-Tanugi
D. Costantin
S. Cutini
F. D'Ammando
M. Deklotz
P. De La Torre Luque
F. De Palma
A. Desai
N. Di Lalla
L. Di Venere
F. Fana Dirirsa
S. J. Fegan
A. Franckowiak
Y. Fukazawa
S. Funk
P. Fusco
F. Gargano
D. Gasparrini
N. Giglietto
R. Gill
F. Giordano
M. Giroletti
J. Granot
D. Green
I. A. Grenier
M. H. Grondin
S. Guiriec
E. Hays
D. Horan
G. Jóhannesson
D. Kocevski
M. Kovac'Evic'
M. Kuss
S. Larsson
L. Latronico
M. Lemoine-Goumard
J. Li
I. Liodakis
F. Longo
F. Loparco
M. N. Lovellette
P. Lubrano
S. Maldera
D. Malyshev
A. Manfreda
G. Martí-Devesa
M. N. Mazziotta
J. E. McEnery
I. Mereu
M. Meyer
P. F. Michelson
W. Mitthumsiri
T. Mizuno
M. E. Monzani
E. Moretti
A. Morselli
I. V. Moskalenko
M. Negro
E. Nuss
N. Omodei
M. Orienti
E. Orlando
M. Palatiello
V. S. Paliya
D. Paneque
Z. Pei
M. Persic
M. Pesce-Rollins
V. Petrosian
F. Piron
H. Poon
T. A. Porter
G. Principe
J. L. Racusin
S. Rain
R. Rando
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
Istituto Nazionale di Fisica Nucleare, Sezione di Perugia
Istituto Nazionale di Fisica Nucleare, Sezione di Bari
Istituto Nazionale di Fisica Nucleare, Sezione di Torino
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa
Istituto Nazionale Di Fisica Nucleare, Sezione di Padova
Laboratoire Univers et Particules de Montpellier
Universite Paris-Saclay
Laboratoire Leprince-Ringuet
INAF Istituto di Astrofisica Spaziale e Fisica Cosmica, Milan
University Science Institute Reykjavik
Centre d'Etudes Nucléaires de Bordeaux Gradignan
Agenzia Spaziale Italiana
Hiroshima University
Deutsches Elektronen-Synchrotron (DESY)
Osservatorio Astronomico di Trieste
Università di Pisa
Stockholms universitet
Naval Research Laboratory
Clemson University
SLAC National Accelerator Laboratory
Kanazawa University
Universitat Autònoma de Barcelona
Università degli Studi di Bari
Open University of Israel
Istituto Nazionale di Fisica Nucleare - INFN
University of Maryland
Università degli Studi di Trieste
Högskolan Dalarna
Mahidol University
Julius-Maximilians-Universität Würzburg
Istituto Di Radioastronomia, Bologna
Università degli Studi di Torino
NASA Marshall Space Flight Center
Max Planck Institute for Physics (Werner Heisenberg Institute)
Medizinische Universitat Innsbruck
NASA Goddard Space Flight Center
The George Washington University
Università degli Studi di Perugia
The Royal Institute of Technology (KTH)
Friedrich-Alexander-Universität Erlangen-Nürnberg
University of Johannesburg
Università degli Studi di Padova
Stellar Solutions, Inc.
Keywords: Earth and Planetary Sciences;Physics and Astronomy
Issue Date: 10-Feb-2020
Citation: Astrophysical Journal. Vol.890, No.1 (2020)
Abstract: © 2020. The American Astronomical Society.. We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early-time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy-loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process.
ISSN: 15384357
Appears in Collections:Scopus 2020

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.