Please use this identifier to cite or link to this item:
http://repository.li.mahidol.ac.th/dspace/handle/123456789/60449
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nattakorn Phewchean | en_US |
dc.contributor.author | Renato Costa | en_US |
dc.contributor.author | Masnita Misiran | en_US |
dc.contributor.author | Yongwimon Lenbury | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Universiti Utara Malaysia | en_US |
dc.contributor.other | PERDO | en_US |
dc.date.accessioned | 2020-12-28T04:58:01Z | - |
dc.date.available | 2020-12-28T04:58:01Z | - |
dc.date.issued | 2020-01-01 | en_US |
dc.identifier.citation | International Journal of Circuits, Systems and Signal Processing. Vol.14, (2020), 821-825 | en_US |
dc.identifier.issn | 19984464 | en_US |
dc.identifier.other | 2-s2.0-85097209741 | en_US |
dc.identifier.uri | http://repository.li.mahidol.ac.th/dspace/handle/123456789/60449 | - |
dc.description.abstract | © 2020, North Atlantic University Union NAUN. All rights reserved. We investigate the derivation of option pricing involving several assets following the Geometric Brownian Motion (GBM). First, we propose some derivations based on the basic ideas of the assets. Next, we consider the trivial case where we have n assets. Finally, we consider different drifts, volatilities and Wiener processes but now from n stochastic assets taking into account a fixed-income. | en_US |
dc.rights | Mahidol University | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097209741&origin=inward | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Engineering | en_US |
dc.title | Alternative methods to derive the black-scholes-merton equation | en_US |
dc.type | Article | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.identifier.doi | 10.46300/9106.2020.14.106 | en_US |
dc.identifier.url | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097209741&origin=inward | en_US |
Appears in Collections: | Scopus 2020 |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.