Simple jQuery Dropdowns
Please use this identifier to cite or link to this item: http://repository.li.mahidol.ac.th/dspace/handle/123456789/727
Title: Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription
Authors: Mok, Sachel
Mallika Imwong
มัลลิกา อิ่มวงศ์
Mackinnon, Margaret J.
Sim, Joan
Ramadoss, Ramya
Yi, Poravuth
Mayfong Mayxay
Kesinee Chotivanich
เกศินี โชติวานิช
Liong, Kek-Yee
Russell, Bruce
Socheat, Duong
Newton, Paul N.
Day, Nicholas P.J.
White, Nicholas J.
Preiser, Peter R.
Nosten, François
Dondorp, Arjen M.
Bozdech, Zbynek
Mahidol University. Faculty of Tropical Medicine. Department of Molecular Tropical Medicine and Genetics
Mahidol University. Faculty of Tropical Medicine. Mahidol-Oxford Tropical Medicine Research Unit (MORU)
Dondorp, Arjen M.
Keywords: Comparative genomics;Comparative transcriptomics;Field isolates;In vivo artemisinin-resistance;Plasmodium falciparum;Open Access article
Issue Date: 3-Aug-2011
Citation: Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, Yi P, et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011 Aug 3;12:391.
Abstract: BACKGROUND: Artemisinin resistance in Plasmodium falciparum malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates. RESULTS: In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC). In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype. CONCLUSIONS: The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis of pathogens with drug resistance phenotypes in vivo.
URI: http://repository.li.mahidol.ac.th/dspace/handle/123456789/727
metadata.dc.identifier.url: http://www.biomedcentral.com/content/pdf/1471-2164-12-391.pdf
ISSN: 1471-2164 (electronic)
Appears in Collections:TM-Article

Files in This Item:
File Description SizeFormat 
tm-ar-mallika-2011-3.pdf4.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.