Xinzheng LanOleksandr VoznyyAmirreza KianiF. Pelayo García De ArquerAbdullah Saud AbbasGi Hwan KimMengxia LiuZhenyu YangGrant WaltersJixian XuMingjian YuanZhijun NingFengjia FanPongsakorn KanjanaboosIllan KramerDavid ZhitomirskyPhilip LeeAlexander PerelgutSjoerd HooglandEdward H. SargentUniversity of TorontoShanghaiTech UniversityMahidol University2018-12-112019-03-142018-12-112019-03-142016-01-13Advanced Materials. Vol.28, No.2 (2016), 299-30415214095093596482-s2.0-84954027690https://repository.li.mahidol.ac.th/handle/20.500.14594/40672© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.Mahidol UniversityEngineeringMaterials SciencePassivation Using Molecular Halides Increases Quantum Dot Solar Cell PerformanceArticleSCOPUS10.1002/adma.201503657