Naphichaya PhacharapiyangkulKrit ThirapanmetheeKhanit Sa-NgiamsuntornUraiwan PanichChe Hsin LeeMullika Traidej ChomnawangSiriraj HospitalChina Medical University HospitalMahidol UniversityNational Sun Yat-Sen University2022-08-042022-08-042021-09-01Cosmetics. Vol.8, No.3 (2021)207992842-s2.0-85112539017https://repository.li.mahidol.ac.th/handle/20.500.14594/76056Hyperpigmentation caused by melanin overproduction can be induced by UV radiation. The quest for effective depigmenting agents continues because many anti-melanin agents have restricted use and/or produce side-effects. The present study was aimed to investigate the inhibitory activity of Musa sapientum Linn. (AA group) peel ethanol extracts (MPE) on α-melanocyte stimulating hormone (α-MSH)-induced melanin production. In addition, the molecular mechanism related to this process was examined in B16F10 mouse melanoma cells. The results indicated that MPE remarkably inhibited melanogenesis in α-MSH-stimulated B16F10 cells. Microphthalmia-associated transcription factor (MITF) and tyrosinase expressions were suppressed by MPE in a concentration-dependent manner. In addition, MPE significantly decreased the expression of melanosome transfer protein markers (Rab27a and Pmel17) in a dose-dependent manner. This study found that the elevated phosphorylation of AKT in the B16F10 cells was diminished by MPE treatment. Furthermore, microtubule-associated protein 1 light chain 3 (LC3)-II and p62 (autophagy markers) were affected after the B16F10 cells were treated with MPE. This study demonstrated that MPE might be an effective agent for anti-melanogenesis through the AKT pathway, subsequently diminishing MITF expression and tyrosinase enzyme family production. The findings indicated that MPE could potentially serve as a depigmenting agent in cosmeceuticals.Mahidol UniversityBiochemistry, Genetics and Molecular BiologyChemical EngineeringMedicinePharmacology, Toxicology and PharmaceuticsThe ethanol extract of musa sapientum linn. Peel inhibits melanogenesis through akt signaling pathwayArticleSCOPUS10.3390/cosmetics8030070