F. AharonianQ. AnAxikeguL. X. BaiY. X. BaiY. W. BaoD. BastieriX. J. BiY. J. BiH. CaiJ. T. CaiZhen CaoZhe CaoJ. ChangJ. F. ChangB. M. ChenE. S. ChenJ. ChenLiang ChenLiang ChenLong ChenM. J. ChenM. L. ChenQ. H. ChenS. H. ChenS. Z. ChenT. L. ChenX. L. ChenY. ChenN. ChengY. D. ChengS. W. CuiX. H. CuiY. D. CuiB. Z. DaiH. L. DaiZ. G. DaiDanzengluobuD. Della VolpeB. D.Ettorre PiazzoliX. J. DongK. K. DuanJ. H. FanY. Z. FanZ. X. FanJ. FangK. FangC. F. FengL. FengS. H. FengY. L. FengB. GaoC. D. GaoL. Q. GaoQ. GaoW. GaoM. M. GeL. S. GengG. H. GongQ. B. GouM. H. GuF. L. GuoJ. G. GuoX. L. GuoY. Q. GuoY. Y. GuoY. A. HanH. H. HeH. N. HeJ. C. HeS. L. HeX. B. HeY. HeM. HellerY. K. HorC. HouH. B. HuS. HuS. C. HuX. J. HuD. H. HuangQ. L. HuangW. H. HuangX. T. HuangX. Y. HuangZ. C. HuangF. JiX. L. JiH. Y. JiaK. JiangZ. J. JiangC. JinT. KeD. KuleshovK. LevochkinB. B. LiCong LiCheng LiF. LiH. B. LiState Key Laboratory of Particle Detection & ElectronicsNanjing UniversityShanghai Astronomical Observatory Chinese Academy of SciencesInstitute for Nuclear Research of the Russian Academy of SciencesShandong UniversityWuhan UniversityYunnan UniversityInstitute of High Energy Physics Chinese Academy of ScienceUniversity of Chinese Academy of SciencesGuangzhou UniversityTsinghua UniversitySun Yat-Sen UniversityUniversity of Science and Technology of ChinaZhengzhou UniversityDublin Institute for Advanced StudiesUniversità degli Studi di Napoli Federico IISichuan UniversityNational Astronomical Observatories Chinese Academy of SciencesMax-Planck-Institut für KernphysikSouthwest Jiaotong UniversityPurple Mountain Observatory Chinese Academy of SciencesUniversité de GenèveHebei Normal UniversityTibet UniversityTIANFU Cosmic Ray Research Center2022-08-042022-08-042021-09-15Physical Review D. Vol.104, No.6 (2021)24700029247000102-s2.0-85115385951https://repository.li.mahidol.ac.th/handle/20.500.14594/78992The Wide Field-of-View Cherenkov Telescope Array (WFCTA) and the Water Cherenkov Detector Array (WCDA) of LHAASO are designed to work in combination for measuring the energy spectra of the cosmic ray species over a very wide energy range from a few TeV to 10 PeV. The energy calibration can be achieved with a proven technique of measuring the westward shift of the Moon shadow cast by galactic cosmic rays due to the geomagnetic field. This deflection angle Δ is inversely proportional to the cosmic ray rigidity. The precise measurement of the shifts by WCDA allows us to calibrate its energy scale for energies as high as 35 TeV. Through a set of commonly triggered events, the energy scales can be propagated to WFCTA. The energies of the events can be derived both by WCDA-1 and WFCTA with the median energies 23.4±0.1±1.3 TeV and (21.9±0.1 TeV), respectively, which are consistent within uncertainties. In addition, the propagation of the energy scale is also validated by the Moon shadow based on the same data selection criteria of the commonly triggered events. This paper reports, for the first time, an observational measurement of the absolute energy scale of the primary cosmic rays generating showers observed by air Cherenkov telescopes.Mahidol UniversityPhysics and AstronomyCalibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experimentArticleSCOPUS10.1103/PhysRevD.104.062007