Mongkolsery LinSomsak OrankitjaroenBrian FisherMahidol UniversityUniversity of Leicester2018-11-092018-11-092014-09-23Asian-European Journal of Mathematics. Vol.7, No.3 (2014)17937183179355712-s2.0-85028195952https://repository.li.mahidol.ac.th/handle/20.500.14594/34125© 2014 World Scientific Publishing Company. In distribution theory, the product of two distributions can only be defined under certain conditions. In this paper, by using Fisher's definition, it is proved that if Gm,s(x) denotes the distribution (lnm+1x-)(s), then the noncommutative neutrix product Gm, s(x) o x+r exists and (Equation Presented) for m, s ≤ 1, where cr, m = ∫01xrlnmxρ(r)(x)dx. Related neutrix products are then deduced.Mahidol UniversityMathematicsThe noncommutative neutrix product of x<inf>-</inf><sup>-s</sup>ln<sup>m</sup> x<inf>-</inf> and x<inf>+</inf><sup>r</sup>ArticleSCOPUS10.1142/S1793557114500429