Sabine A. FraschkaMichael FilarskyRegina HooIgor NiederwieserXue Yan YamNicolas M.B. BrancucciFranziska MohringAnnals T. MushunjeXimei HuangPeter R. ChristensenFrancois NostenZbynek BozdechBruce RussellRobert W. MoonMatthias MartiPeter R. PreiserRichárd BártfaiTill S. VossHarvard School of Public HealthLondon School of Hygiene & Tropical MedicineUniversitat BaselSwiss Tropical and Public Health Institute (Swiss TPH)University of OtagoRadboud University NijmegenMahidol UniversityNuffield Department of Clinical MedicineNanyang Technological UniversityUniversity of Glasgow2019-08-232019-08-232018-03-14Cell Host and Microbe. Vol.23, No.3 (2018), 407-420.e819346069193131282-s2.0-85043288655https://repository.li.mahidol.ac.th/handle/20.500.14594/46038© 2018 The Authors Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium. Fraschka, Filarsky et al. performed a genome-wide characterization of heterochromatin organization across multiple species, strains, and life cycle stages of malaria parasites. This revealed that heterochromatic gene silencing is a conserved strategy to drive clonal variation of surface antigens and to control life cycle stage transitions and cell differentiation.Mahidol UniversityImmunology and MicrobiologyComparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria ParasitesArticleSCOPUS10.1016/j.chom.2018.01.008