Kianpour M.Huang C.W.Vejvisithsakul P.P.Wang J.Y.Li C.F.Shiao M.S.Pan C.T.Shiue Y.L.Mahidol University2023-07-222023-07-222023-08-01International Journal of Biological Macromolecules Vol.245 (2023)01418130https://repository.li.mahidol.ac.th/handle/20.500.14594/88009The objectives were to identify the functional domains of a potential oncoprotein, cell migration inducing hyaluronidase 2 (CEMIP2), evaluate its expression levels and roles in colorectal cancer (CRC), and develop an aptamer-based nanoparticle for targeted therapy. Data mining on TCGA identified that CEMIP2 might play oncogenic roles in CRC. In a local cohort, CEMIP2 mRNA levels significantly stepwise increase in CRC patients with higher stages, and high CEMIP2 confers worse disease-free survival. In addition, CEMIP2 mRNA levels significantly correlated to hyaluronan levels in sera from CRC patients. Deletion mapping identified that CEMIP2 containing G8 and PANDER-like domains preserved hyaluronidase activity and oncogenic roles, including cell proliferation, anchorage-independent cell growth, cell migration and invasion, and human umbilical vein endothelial cell (HUVEC) tube formation in CRC-derived cells. A customized monoclonal mouse anti-human CEMIP2 antibody probing the PANDER-like domain (anti-289307) counteracted CEMIP2-mediated carcinogenesis in vitro. Cell-SELEX pinpointed an aptamer, aptCEMIP2(101), specifically interacted with the full-length CEMIP2, potentially involving its 3D structure. Treatments with aptCEMIP2(101) significantly reduced CEMIP2-mediated tumorigenesis in vitro. Mesoporous silica nanoparticles (MSN) carrying atpCEMIP2(101) and Dox were fabricated. Dox@MSN, MSN-aptCEMIP2(101), and Dox@MSN-aptCEMIP2(101) significantly suppressed tumorigenesis in vitro compared to the Mock, while Dox@MSN-aptCEMIP2(101) showed substantially higher effects compared to Dox@MSN and MSN-aptCEMIP2(101) in CRC-derived cells. Our study identified a novel oncogene and developed an effective aptamer-based targeted therapeutic strategy.Biochemistry, Genetics and Molecular BiologyAptamer/doxorubicin-conjugated nanoparticles target membranous CEMIP2 in colorectal cancerArticleSCOPUS10.1016/j.ijbiomac.2023.1255102-s2.0-851633697311879000337353120