Suntornsaratoon P.Ferraris R.P.Ambat J.Antonio J.M.Flores J.Jones A.Su X.Gao N.Li W.V.Mahidol University2024-04-012024-04-012024-04-01Laboratory Investigation Vol.104 No.4 (2024)00236837https://repository.li.mahidol.ac.th/handle/20.500.14594/97823Intestinal microbiota confers susceptibility to diet-induced obesity, yet many probiotic species that synthesize tryptophan (trp) actually attenuate this effect, although the underlying mechanisms are unclear. We monocolonized germ-free mice with a widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) under trp-free or -sufficient dietary conditions. We obtained untargeted metabolomics from the mouse feces and serum using liquid chromatography–mass spectrometry and obtained intestinal transcriptomic profiles via bulk-RNA sequencing. When comparing LGG-monocolonized mice with germ-free mice, we found a synergy between LGG and dietary trp in markedly promoting the transcriptome of fatty acid metabolism and β-oxidation. Upregulation was specific and was not observed in transcriptomes of trp-fed conventional mice and mice monocolonized with Ruminococcus gnavus. Metabolomics showed that fecal and serum metabolites were also modified by LGG-host-trp interaction. We developed an R-Script-based MEtabolome-TRanscriptome Correlation Analysis algorithm and uncovered LGG- and trp-dependent metabolites that were positively or negatively correlated with fatty acid metabolism and β-oxidation gene networks. This high-throughput metabolome-transcriptome correlation strategy can be used in similar investigations to reveal potential interactions between specific metabolites and functional or disease-related transcriptomic networks.MedicineMetabolomic and Transcriptomic Correlative Analyses in Germ-Free Mice Link Lacticaseibacillus rhamnosus GG-Associated Metabolites to Host Intestinal Fatty Acid Metabolism and β-OxidationArticleSCOPUS10.1016/j.labinv.2024.1003302-s2.0-851885310631530030738242234