Andreas EdsfeldtBjörn SonessonHelena RosénMarcelo H. PetriKiattisak HongkuTimothy ReschNuno V. DiasInstitutionen för Kliniska Vetenskaper, MalmöCentral Hospital VaxoSkånes universitetssjukhusFaculty of Medicine, Siriraj Hospital, Mahidol University2020-05-052020-05-052020-01-01Journal of Endovascular Therapy. (2020)15451550152660282-s2.0-85082649431https://repository.li.mahidol.ac.th/handle/20.500.14594/54682© The Author(s) 2020. Purpose: To validate a new 2D-3D registration method of fusion imaging during aortic repair in a system prepared only for 3D-3D registration and to compare radiation doses and accuracy. Materials and Methods: The study involved 189 patients, including 94 patients (median age 70 years; 85 men) who underwent abdominal endovascular aneurysm repair (EVAR) with 2D-3D fusion on an Artis zee imaging system and 95 EVAR patients (median age 70 years; 81 men) from a prior study who had 3D-3D registration done using cone beam computed tomography (CBCT). For the 2D-3D registration, an offline CBCT of the empty operating table was imported into the intraoperative dataset and superimposed on the preoperative computed tomography angiogram (CTA). Then 2 intraoperative single-frame 2D images of the skeleton were aligned with the patient’s skeleton on the preoperative CTA to complete the registration process. A digital subtraction angiogram was done to correct any misalignment of the aortic CTA volume. Values are given as the median [interquartile range (IQR) Q1, Q3]. Results: The 2D-3D registration had an accuracy of 4.0 mm (IQR 3.0, 5.0) after bone matching compared with the final correction with DSA (78% within 5 mm). By applying the 2D-3D protocol the radiation exposure (dose area product) from the registration of the fusion image was significantly reduced compared with the 3D-3D registration [1.12 Gy∙cm2 (IQR 0.41, 2.14) vs 43.4 Gy∙cm2 (IQR 37.1, 49.0), respectively; p<0.001). Conclusion: The new 2D-3D registration protocol based on 2 single-frame images avoids an intraoperative CBCT and can be used for fusion imaging registration in a system originally designed for 3D-3D only. This 2D-3D registration protocol is accurate and leads to a significant reduction in radiation exposure.Mahidol UniversityMedicineValidation of a New Method for 2D Fusion Imaging Registration in a System Prepared Only for 3DArticleSCOPUS10.1177/1526602820912223