Publication: Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion - A Partial-variance-of-increments Analysis
Submitted Date
Received Date
Accepted Date
Issued Date
2020-02-01
Copyright Date
Announcement No.
Application No.
Patent No.
Valid Date
Resource Type
Edition
Resource Version
Language
File Type
No. of Pages/File Size
ISBN
ISSN
00670049
eISSN
Scopus ID
WOS ID
Pubmed ID
arXiv ID
Call No.
Other identifier(s)
2-s2.0-85081672183
Journal Title
Volume
Issue
item.page.oaire.edition
Start Page
End Page
Access Rights
Access Status
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Physical Location
Bibliographic Citation
Astrophysical Journal, Supplement Series. Vol.246, No.2 (2020)
Citation
Rohit Chhiber, M. L. Goldstein, B. A. Maruca, A. Chasapis, W. H. Matthaeus, D. Ruffolo, R. Bandyopadhyay, T. N. Parashar, R. Qudsi, T. Dudok De Wit, S. D. Bale, J. W. Bonnell, K. Goetz, P. R. Harvey, R. J. MacDowall, D. Malaspina, M. Pulupa, J. C. Kasper, K. E. Korreck, A. W. Case, M. Stevens, P. Whittlesey, D. Larson, R. Livi, M. Velli, N. Raouafi (2020). Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion - A Partial-variance-of-increments Analysis. Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/57864.
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion - A Partial-variance-of-increments Analysis
Alternative Title(s)
Author(s)
Rohit Chhiber
M. L. Goldstein
B. A. Maruca
A. Chasapis
W. H. Matthaeus
D. Ruffolo
R. Bandyopadhyay
T. N. Parashar
R. Qudsi
T. Dudok De Wit
S. D. Bale
J. W. Bonnell
K. Goetz
P. R. Harvey
R. J. MacDowall
D. Malaspina
M. Pulupa
J. C. Kasper
K. E. Korreck
A. W. Case
M. Stevens
P. Whittlesey
D. Larson
R. Livi
M. Velli
N. Raouafi
M. L. Goldstein
B. A. Maruca
A. Chasapis
W. H. Matthaeus
D. Ruffolo
R. Bandyopadhyay
T. N. Parashar
R. Qudsi
T. Dudok De Wit
S. D. Bale
J. W. Bonnell
K. Goetz
P. R. Harvey
R. J. MacDowall
D. Malaspina
M. Pulupa
J. C. Kasper
K. E. Korreck
A. W. Case
M. Stevens
P. Whittlesey
D. Larson
R. Livi
M. Velli
N. Raouafi
Author's Affiliation
Author's E-mail
Editor(s)
Editor's Affiliation
Corresponding Author(s)
Creator(s)
Compiler
Advisor(s)
Illustrator(s)
Applicant(s)
Inventor(s)
Issuer
Assignee
Other Contributor(s)
Universite d'Orleans
University of Minnesota Twin Cities
Space Sciences Laboratory at UC Berkeley
University of California, Los Angeles
University of Michigan, Ann Arbor
University of California, Berkeley
University of Maryland, Baltimore County
University of Delaware
Johns Hopkins University Applied Physics Laboratory
Imperial College London
Mahidol University
Smithsonian Astrophysical Observatory
NASA Goddard Space Flight Center
The Bartol Research Institute
University of Colorado Boulder
University of Minnesota Twin Cities
Space Sciences Laboratory at UC Berkeley
University of California, Los Angeles
University of Michigan, Ann Arbor
University of California, Berkeley
University of Maryland, Baltimore County
University of Delaware
Johns Hopkins University Applied Physics Laboratory
Imperial College London
Mahidol University
Smithsonian Astrophysical Observatory
NASA Goddard Space Flight Center
The Bartol Research Institute
University of Colorado Boulder
Series
Has Part
Abstract
© 2020. The American Astronomical Society. All rights reserved.. During the Parker Solar Probe's (PSP) first perihelion pass, the spacecraft reached within a heliocentric distance of ∼37 R o˙ and observed numerous magnetic and flow structures characterized by sharp gradients. To better understand these intermittent structures in the young solar wind, an important property to examine is their degree of correlation in time and space. To this end, we use the well-tested partial variance of increments (PVI) technique to identify intermittent events in FIELDS and SWEAP observations of magnetic and proton-velocity fields (respectively) during PSP's first solar encounter, when the spacecraft was within 0.25 au from the Sun. We then examine distributions of waiting times (WT) between events with varying separation and PVI thresholds. We find power-law distributions for WT shorter than a characteristic scale comparable to the correlation time of the fluctuations, suggesting a high degree of correlation that may originate in a clustering process. WT longer than this characteristic time are better described by an exponential, suggesting a random memory-less Poisson process at play. These findings are consistent with near-Earth observations of solar wind turbulence. The present study complements the one by Dudok de Wit et al., which focuses on WT between observed "switchbacks" in the radial magnetic field.