Browsing by Author "Likasitwatanakul P."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Metadata only Androgen production, uptake, and conversion (APUC) genes define prostate cancer patients with distinct clinical outcomes(2024-10-22) Bergom H.E.; Boytim E.; McSweeney S.; Sadeghipour N.; Elliott A.; Passow R.; Toye E.; Li X.; Likasitwatanakul P.; Geynisman D.M.; Dehm S.M.; Halabi S.; Sharifi N.; Antonarakis E.S.; Ryan C.J.; Hwang J.; Bergom H.E.; Mahidol UniversityBACKGROUND. Prostate cancer (PC) is driven by aberrant signaling of the androgen receptor (AR) or its ligands, and androgen deprivation therapies (ADTs) are a cornerstone of treatment. ADT responsiveness may be associated with germline changes in genes that regulate androgen production, uptake, and conversion (APUC). METHODS. We analyzed whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) data from prostate tissues (SU2C/PCF, TCGA, GETx). We also interrogated the Caris Precision Oncology Alliance (POA) DNA (592-gene/whole exome) and RNA (whole transcriptome) next-generation sequencing databases. Algorithm for Linking Activity Networks (ALAN) was used to quantify all pairwise gene-to-gene associations. Real-world overall survival was determined from insurance claims data using Kaplan-Meier estimates. RESULTS. Six APUC genes (HSD3B1, HSD3B2, CYP3A43, CYP11A1, CYP11B1, CYP17A1) exhibited coalescent gene behavior in a cohort of metastatic tumors (n = 208). In the Caris POA dataset, the 6 APUC genes (APUC-6) exhibited robust clustering in primary prostate (n = 4,490) and metastatic (n = 2,593) biopsies. Surprisingly, tumors with elevated APUC-6 expression had statically lower expression of AR, AR-V7, and AR signaling scores, suggesting ligand-driven disease biology. APUC-6 genes instead associated with the expression of alternative steroid hormone receptors, ESR1/2 and PGR. We used RNA expression of AR or APUC-6 genes to define 2 subgroups of tumors with differential association with hallmark pathways and cell surface targets. CONCLUSIONS. The APUC-6-high/AR-low tumors represented a subgroup of patients with good clinical outcomes, in contrast with the AR-high or neuroendocrine PCs. Altogether, measuring the aggregate expression of APUC-6 genes in current genomic tests identifies PCs that are ligand (rather than AR) driven and require distinct therapeutic strategies.Item Metadata only Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment(2024-01-01) Miller C.D.; Likasitwatanakul P.; Toye E.; Hwang J.H.; Antonarakis E.S.; Miller C.D.; Mahidol UniversityIntroduction: Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. Areas covered: We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. Expert opinion: Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.Item Metadata only Identifying regulators of aberrant stem cell and differentiation activity in colorectal cancer using a dual endogenous reporter system(2024-12-01) Spisak S.; Chen D.; Likasitwatanakul P.; Doan P.; Li Z.; Bala P.; Vizkeleti L.; Tisza V.; De Silva P.; Giannakis M.; Wolpin B.; Qi J.; Sethi N.S.; Spisak S.; Mahidol UniversityAberrant stem cell-like activity and impaired differentiation are central to the development of colorectal cancer (CRC). To identify functional mediators of these key cellular programs, we engineer a dual endogenous reporter system by genome-editing the SOX9 and KRT20 loci of human CRC cell lines to express fluorescent reporters, broadcasting aberrant stem cell-like and differentiation activity, respectively. By applying a CRISPR screen targeting 78 epigenetic regulators with 542 sgRNAs to this platform, we identify factors that contribute to stem cell-like activity and differentiation in CRC. Perturbation single cell RNA sequencing (Perturb-seq) of validated hits nominate SMARCB1 of the BAF complex (also known as SWI/SNF) as a negative regulator of differentiation across an array of neoplastic colon models. SMARCB1 is a dependency and required for in vivo growth of human CRC models. These studies highlight the utility of biologically designed endogenous reporter platforms to uncover regulators with therapeutic potential.Item Metadata only Structurally Oriented Classification of FOXA1 Alterations Identifies Prostate Cancers with Opposing Clinical Outcomes and Distinct Molecular and Immunologic Subtypes(2025-03-03) Hwang J.; Likasitwatanakul P.; Deshmukh S.K.; Wu S.; Kwon J.J.; Toye E.; Moline D.; Evans M.G.; Elliott A.; Passow R.; Luo C.; John E.; Gandhi N.; McKay R.R.; Heath E.I.; Nabhan C.; Reizine N.; Orme J.J.; Domingo Domenech J.M.; Sartor O.; Baca S.C.; Dehm S.M.; Antonarakis E.S.; Hwang J.; Mahidol UniversityPURPOSE: Around 10% to 15% of prostate cancers harbor recurrent aberrations in the Forkhead Box A1 gene, FOXA1, whereby the alteration type and the effect on the forkhead (FKH) domain affect protein function. We developed a FOXA1 classification system to inform clinical management. EXPERIMENTAL DESIGN: A total of 5,014 prostate cancer samples were examined using whole-exome and -transcriptome sequencing from the Caris Life Sciences database. We denoted class 1 FOXA1 alterations as missense and in-frame insertions/deletions with subclasses oriented with respect to the FKH domain. These were in the first part of the FKH domain [class 1A: amino acids (AA) 168-246], within the Wing2 region of FKH (class 1B: AA 247-269), or outside FKH (class 1C: AA 1-167, 270+). Two hotspot missense mutations at R219 were denoted class 2. Class 3 included predicted truncating mutations with subclasses partitioned based on the FKH domain (class 3A: AA 1-269 and class 3B: AA 270+). Class 4 represented FOXA1 amplifications. Real-world overall survival and therapy outcomes were determined from insurance claims. RESULTS: FOXA1 alterations did not influence survival when considered in aggregate but had distinct prognostic effects when stratified by class. In primary prostate samples, class 1A alterations were associated with overall improved survival (HR, 0.57; P = 0.03); a similar trend was seen in metastatic biopsies with class 1B (HR, 0.84; P = 0.09). Conversely, in primary specimens, class 1C exhibited worse survival upon second-generation androgen receptor signaling inhibitor treatment (HR, 1.93; P < 0.001). Class 2 mutations (R219C/S) were enriched in neuroendocrine prostate cancers and were associated with overall poor survival (HR, 2.05; P < 0.001) and worse outcomes to first-line androgen-deprivation therapies (HR, 2.5; P < 0.001). Class 3A alterations indicated improved survival (HR, 0.70; P = 0.01), whereas class 3B alterations portended poor outcomes (HR, 1.50; P < 0.001). Amplifications (class 4) indicated poor outcomes in metastatic samples (HR, 1.48; P = 0.02). Molecularly, different FOXA1 alteration classes harbored distinct mutational and immunologic features as well as unique transcriptional programs. Finally, relative to European Americans, African Americans had increased class 1C alterations, whereas Asian/Pacific Islander patients had increased class 1B alterations. CONCLUSIONS: FOXA1 alterations should not be interpreted in aggregate, as different classes are associated with divergent molecular features and clinical outcomes. Our revised classification schema facilitates clinical decision-making for patients with prostate cancer and uncovers important racial differences.