Publication:
Gaussian kernel approximation algorithm for feedforward neural network design

dc.contributor.authorSrisuphab, A.en
dc.contributor.authorMitrpanont, J.L.en
dc.contributor.authorอนันต์ ศรีสุภาพ
dc.contributor.authorเจริญศรี มิตรภานนท์
dc.contributor.authorอนันต์ ศรีสุภาพ
dc.contributor.authorเจริญศรี มิตรภานนท์
dc.contributor.otherMahidol University. Faculty of Information and Communication Technology
dc.date.accessioned2011-06-07T03:02:59Zen_US
dc.date.accessioned2011-12-09T07:16:05Z
dc.date.accessioned2018-03-15T08:55:05Z
dc.date.available2011-06-07T03:02:59Zen_US
dc.date.available2011-12-09T07:16:05Z
dc.date.available2018-03-15T08:55:05Z
dc.date.created2010-04-01en_US
dc.date.issued2009-12-01en_US
dc.description.abstractA Gaussian kernel approximation algorithm for a feedforward neural network is presented. The approach used by the algorithm, which is based on a constructive learning algorithm, is to create the hidden units directly so that automatic design of the architecture of neural networks can be carried out. The algorithm is defined using the linear summation of input patterns and their randomized input weights. Hidden-layer nodes are defined so as to partition the input space into homogeneous regions, where each region contains patterns belonging to the same class. The largest region is used to define the center of the corresponding Gaussian hidden nodes. The algorithm is tested on three benchmark data sets of different dimensionality and sample sizes to compare the approach presented here with other algorithms. Real medical diagnoses and a biological classification of mushrooms are used to illustrate the performance of the algorithm. These results confirm the effectiveness of the proposed algorithm.en
dc.identifier.citationApplied Mathematics and Computation. Vol. 215, No. 7(2009), 2686-2693en
dc.identifier.doi10.1016/j.amc.2009.09.008
dc.identifier.issn0096-3003en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/10057
dc.language.isoengen
dc.rights.holderElsevier
dc.subjectConstructive learningen
dc.subjectNeural network designen
dc.subjectOptimal hidden nodesen
dc.subjectAutomatic designen
dc.subjectBenchmark dataen
dc.subjectGaussian kernelsen
dc.subjectHomogeneous regionsen
dc.subjectInput patternsen
dc.subjectInput spaceen
dc.subjectInput weightsen
dc.subjectLinear summationen
dc.subjectOther algorithmsen
dc.subjectSample sizesen
dc.titleGaussian kernel approximation algorithm for feedforward neural network designen
dc.typeArticleen
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections