Journal Issue:
EnNRJ Vol. 16 No. 1

Journal Volume

Journal Volume
EnNRJ Volume 16
(2018)

Articles

PublicationOpen Access
Efficiency of Biochar and Bio-Fertilizers Derived from Maize Debris as Soil Amendments
(2018) Kritsadapan Palakit; Khwanchai Duangsathaporn; Pichit Lumyai; Narapong Sangram; Purin Sikareepaisarn; Chokdee Khantawan
Unsuitable handling of crop residues can result in many environmental problems such as air pollution and soil degradation. In the northern parts of Thailand, such problems are partly caused by the burning of agricultural debris after harvesting. The use of maize debris as an amendment for degraded soil can reduce such problems. The aims of this research were twofold. Firstly, to produce biochar and bio-fertilizer from maize debris to improve the quality of degraded agricultural soil. Secondly, to study the efficiency of biochar and bio-fertilizer in Chinese kale (Brassica alboglabra) cultivation with two different water regimes. From the study, it was found that 2.8 kg of dry maize debris could produce 1 kg of biochar and could store 13.6% organic carbon, while 0.5 kg of dry maize debris mixed with 1.1 kg of cow dung could produce 1 kg bio-fertilizer and could store 16.4% organic carbon. Watering once a day resulted in an increase in the yield which was comparatively greater than watering twice a day. By adding bio-fertilizer at 25% (w/w) in soil, the fresh weight of the kale plants was found to be about six times greater than those grown in an untreated soil. A suitable amount of bio-fertilizer to be added to soil for Chinese kale cultivation ranged between 15-30% (w/w), while a maximum of 25-30% (w/w) bio-fertilizer in soil was sufficient for plant growth and it was not necessary to add biochar to the soil.
PublicationOpen Access
Fast and Efficient Removal of Hexavalent Chromium from Water by Iron Oxide Particles
(2018) Duangta Kitkaew; Athit Phetrak; Sumate Ampawong; Rachaneekorn Mingkhwan; Doungkamon Phihusut; Kamolnetr Okanurak; Chongrak Polprasert
Iron oxide particles (IOPs) were synthesized by chemical co-precipitation technique and further used as an adsorbent in removing hexavalent chromium (Cr(VI)) from aqueous solutions during batch adsorption. The IOP adsorbent had specific surface area of 65 m2/g, total pore volume of 0.25 cm3/g and mostly contained a mesoporous structure. The analysis of scanning and transmission electron microscopy indicated that the adsorbent contained a substantial amount of iron oxide of about 66%, which was well distributed throughout the adsorbent. The IOP adsorbent showed a rapid and efficient Cr(VI) removal that followed Langmuir adsorption isotherm model with maximum adsorption capacity of 2.39 mg-Cr(VI)/g-IOP, demonstrating a monolayer formation on the adsorptive sites of IOP. The kinetic adsorption of Cr(VI) on the IOP followed the pseudo-second-order model, suggesting chemisorption. Thus, the IOP adsorbent provides a potentially effective technology in eliminating of Cr(VI) from water since it can remove appreciable amounts of Cr(VI) with a relatively short contact time of 30 min.

Availability

Collections