Publication: Epigenetic memory at malaria virulence genes
Issued Date
2007-01-16
Resource Type
ISSN
00278424
Other identifier(s)
2-s2.0-33846523065
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Proceedings of the National Academy of Sciences of the United States of America. Vol.104, No.3 (2007), 899-902
Suggested Citation
Thanat Chookajorn, Ron Dzikowski, Matthias Frank, Felomena Li, Alisha Z. Jiwani, Daniel L. Hartl, Kirk W. Deitsch Epigenetic memory at malaria virulence genes. Proceedings of the National Academy of Sciences of the United States of America. Vol.104, No.3 (2007), 899-902. doi:10.1073/pnas.0609084103 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/24264
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Epigenetic memory at malaria virulence genes
Other Contributor(s)
Abstract
During its red blood cell stage, the malaria parasite Plasmodium falciparum can switch its variant surface proteins (P. falciparum erythrocyte membrane protein 1) to evade the host immune response. The var gene family encodes P. falciparum erythrocyte membrane protein 1, different versions of which have unique binding specificities to various human endothelial surface molecules. Individual parasites each contain ≈60 var genes at various locations within their chromosomes; however, parasite isolates contain different complements of var genes, thus, the gene family is enormous with a virtually unlimited number of members. A single var gene is expressed by each parasite in a mutually exclusive manner. We report that control of var gene transcription and antigenic variation is associated with a chromatin memory that includes methylation of histone H3 at lysine K9 as an epigenetic mark. We also discuss how gene transcription memory may affect the mechanism of pathogenesis and immune evasion. © 2007 by The National Academy of Sciences of the USA.