Publication:
Bootstrapping with R to Determine Variances of Mixture Model Estimates in Predicting Confidence Intervals for Population Sizes

dc.contributor.authorChareena Ujehen_US
dc.contributor.authorPratana Satitvipaweeen_US
dc.contributor.authorJutatip Sillabutraen_US
dc.contributor.authorPichitpong Soontornpipiten_US
dc.contributor.authorPrasong Kitidamrongsuken_US
dc.contributor.authorChukiat Viwatwongkasemen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:41:08Z
dc.date.accessioned2019-03-14T08:04:34Z
dc.date.available2018-12-11T02:41:08Z
dc.date.available2019-03-14T08:04:34Z
dc.date.issued2016-01-01en_US
dc.description.abstract© 2016 The Authors. It is not easy to find the variance estimates of mixture model via the theoretical derivation directly. Instead, bootstrapping denoting a resampling technique from an original sample dataset with replacement allocation is used to calculate variances of mixture estimates of zero-truncated Poisson distributions in a prediction of population size and its confidence interval. The application is the estimation of the number of drug (opium) users in Thailand 2007 under surveillance data of counts of treatment episodes in a case. The results indicated that there were 3,262 observed opium cases who received treatments, the estimate of the unobserved number of opium users without receiving any treatment was 3,931, leading to total population size estimate of 7,193 opium users. The 95% confidence intervals as a by-product of bootstrapping were 6,674-7,712 under bootstrap normal base, 6,782-7,761 under bootstrap 95% percentiles, and 6,626-7,605 under bootstrap t intervals. Bootstrapping algorithm with R program is available here.en_US
dc.identifier.citationProcedia Computer Science. Vol.86, (2016), 216-219en_US
dc.identifier.doi10.1016/j.procs.2016.05.096en_US
dc.identifier.issn18770509en_US
dc.identifier.other2-s2.0-84999748187en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43513
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84999748187&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleBootstrapping with R to Determine Variances of Mixture Model Estimates in Predicting Confidence Intervals for Population Sizesen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84999748187&origin=inwarden_US

Files

Collections